
Towards an implicit characterisation of the

polynomial hierarchy in an unbounded arithmetic

Work in progress

Patrick Baillot Anupam Das

Univ Lyon, CNRS, ENS de Lyon, UCB Lyon 1, LIP

1 Introduction and motivation

Today, there are countless approaches towards characterising complexity classes
via logic. Foremost amongst these lies the proof-theoretic approach, character-
ising classes as the ‘representable’ functions of some logic or theory. Examples
include bounded arithmetic [7] [17] [12], applicative theories [9] [16], intrinsic
and ramified theories [20] [5], fragments of linear logic [15] [14] [18] [2] and
fragments of intuitionistic logic [19].

To some extent there is a distinction between various notions of ‘repre-
sentability’, namely between logics that type terms computing functions of a
given complexity class, and theories that prove the totality or convergence of
programs computing functions in a given complexity class. Perhaps a more
important (and somewhat orthogonal) distinction for the Dice-Fopara com-
munity is whether the constraints on the logic or theory are implicit or explicit.
The former includes constraints such as ramification, type level and substruc-
tural considerations, while the latter includes bounded quantification, bounded
modalities etc. This distinction is also naturally exhibited in associated function
algebras, e.g. Cobham’s limited recursion on notation [11] vs. Bellantoni and
Cook’s predicative recursion on notation [4].

Some correlations abound: explicit bounds are typically far more useful for
more fine-grained characterisations of complexity classes, e.g. levels of the poly-
nomial or arithmetical hierarchies, and often admit witness extraction methods
that remain in a ground type programming language, e.g. via recursion the-
oretic characterisations. Implicit bounds, however, are more often associated
with higher-typed programming languages, which are arguably more useful for
achieving witness extraction at all for powerful theories such as arithmetic and
set theory, cf. [1], [22]. Complexity bounds are harder to obtain, but the frame-
work is nonetheless somewhat more desirable since no bounds occur in the char-
acterisation itself per se.

In this line of work we attempt to ameliorate the situation by using im-
plicit methods to delineate fine-grained hierarchies of feasible complexity classes,
namely the polynomial hierarchy, PH. One particular feature of this work that
helps make this possible is to break one of the aforementioned correlations:
while we use implicit constraints, our witness extraction methods will use only

1



functions of bounded type level. In this way we can naturally appeal to func-
tion algebras, which are of ground type in nature, which implicitly characterise
PH, namely via predicative minimisation [6]. In order to remain in this class of
programs and not get lost with higher types, we appeal to the witness function
method of extracting programs from proofs, a technique developed by Buss [7]
[8], which is ideal for extracting ground programs directly from classical proofs
in weak theories. This extends work presented in [3].

2 State of the art

As we have already argued, it is natural to expect that characterisations of
hierarchies such as PH are more readily established by using ground or bounded
type witness extraction procedures, due to the correspondence between logical
searches in a program and the quantification over objects of ground type in a
theory. As justification for this position, consider the following table of examples
of known characterisations:1

Class Ground Higher order

NCi TNC i [10], VNC i [12] -
P S1

2 [7], [21], V 1 [23] [12] LLL [14], SLL [18]
�i Si

2 [7], [16] -
PH S2 -

PSPACE U1
2 [7] STAB [13]

Elementary I∆0 + exp ELL [14]

Thus, if we want an implicit characterisation of PH in a logical theory, we should
break the apparent (although not universal) link between ‘implicit’ and ‘higher
type’. Now, if we zoom in on the ground setting, where extracted programs do
not make use of higher types, there are still several parameters by which the
characterisations can vary, in particular:

• How are programs specified in the language of the theory? By a formula,
as in Peano arithmetic, by a first-order equational program, or by an
applicative term in the style of combinatory algebra;

• What type of programs are extracted from proofs of the theory? A pro-
gram of a bounded recursion class, e.g. of Cobham’s algebra, or of a tiered
recursion class, e.g. of Bellantoni and Cook’s algebra.

We classify some known characterisations from the literature according to these
two parameters in the following table:

bounded rec. programs tiered rec. programs

formula PH, �i (Buss [7])

equational P
(Leivant [20])

applicative P (Strahm [21]) P
PH (Kahle-Oitavem [16]) (Cantini [9])

1All classes can be taken in their functional variations.

2



Our goal is to extend the approach using extraction of programs of a tiered
recursion class (second column), using the formula style of specification (first
row), to the whole of the polynomial hierarchy, i.e. PH and its levels �i.

3 Towards an implicit theory for PH

We explain our approach for this work-in-progress in more detail here, referring
to previous work when analogous methods are used.

3.1 Implicit programs for PH

Since we want to remain at ground type, the natural programs in which to
extract our witnesses will come from recursion theoretic characterisations, cf.
the table above. Indeed, as we have already mentioned, we are not aware of any
‘higher-type’ characterisation of PH. Of these, only the Bellantoni framework
from [6], which extends BC-programs by predicative minimisation constitutes
an implicit characterisation, and so we will look to extract our programs into
this function algebra, henceforth denoted µBC.

3.2 Constraints on induction

An appealing feature of the bounded arithmetic approach is that bounds on
(bounded) quantifier alternation in induction formulae precisely delimit the lev-
els of PH, and one of our desiderata is to replicate this property, only for
unbounded quantifiers. Naturally, another constraint will be required to stop
ourselves from exhausting the arithmetical hierarchy once bounds are dismissed,
and for this we use essentially a ramification of individuals: explicit predicates
N0, N1, . . . will be used similarly to Peano’s N predicate to intuitively indicate
‘how sure’ we are that a variable denotes a genuine natural number.

In fact, two predicates will suffice and their relationship is entirely governed
by the equation N1(x) ⇐⇒ �N0(x), under the laws of the modal logic S4 . The
distinction between the two predicates corresponds to the distinction between
safe and normal variables in BC-like programs, which was an observation from
previous work [3]. A similar phenomenon occurs in Cantini’s work [9], which
presents a characterisation of P in an applicative theory, in order to extract
BC programs. While he allows arbitrary alternation of unbounded quantifiers,
note that his induction is positive, and so universal quantifiers cannot vary over
certified natural numbers, i.e. individuals in N . In fact this sort of unbounded
quantification is also compatible with our approach of [3].

3.3 Extraction at ground type

As we did in [3], we will rely on the witness function method for extracting
functions at bounded type. The idea is as follows:

1. Reduce a proof to De Morgan normal form, with formulae over the basis
{⊥,>,∨,∧,∃,∧} and negation restricted to atoms.

2. Conduct a free-cut elimination on the proof, resulting in a proof whose
formulae are restricted to essentially just subformulae of the conclusion,
axioms and nonlogical steps.

3



3. Extract witnesses inductively from the proof, with appropriate semantic
properties of these programs verified by an interpretation into a (classical)
quantifier-free theory.

1 ensures that our extraction works at ground type, rather than higher types
which are typically necessary when negation has larger scope. At the same time
it preserves the quantifier alternation information that is crucial to distinguish-
ing the levels of PH. 2 allows us to assume that all formulae in a proof have
logical complexity bounded by that of induction formulae. This means that,
when extracting programs via 3, quantifier alternation of induction formulae
corresponds to the depth of minimisation operators in a µBC program, and
so potentially allows for a level-by-level correspondence with the polynomial
hierarchy.

We point out that, in some ways, this is similar to approaches from ap-
plicative theories, which typically use free-cut elimination followed by a direct
realisability argument, e.g. in [21], [9] and [16]. Indeed this could have been
possible in our previous work [3], as Cantini did in his work [9], for a charac-
terisation of P. However, in this case, since the quantifiers are unbounded the
realisability argument is apparently not readily formalised, and it is therefore
quite natural to pursue a bona fide proof interpretation.

3.4 Completeness for PH

In the other direction, showing completeness for PH, it seems straightforward
to formalise a standard argument, e.g. from bounded arithmetic [7], where ap-
plications of minimisation in a program correspond to the well ordering property
in arithmetic. This is in turn is a corollary of induction but, in this case, cru-
cially relies on the use of right-contraction in the logic. It seems that this feature
is crucial in distinguishing these theories from ‘linear’ variants like in previous
work [3], and in particular work of Bellantoni and Hofmann [5] where, without
right-contraction, any number of quantifier alternations still corresponds to only
polynomial time computation.

3.5 Putting it all together

To summarise the main goal of this work-in-progress, we are aiming for a vari-
ation of the following result:

Conjecture. First-order classical modal logic S4 with induction restricted to
non-modal formulae, over a suitable set of axioms, characterises the class PH.
Bounds on quantifier alternation in induction formulae delimit the levels of PH.

4 Conclusions

We surveyed the state of the art for representing function classes proof theoret-
ically by logics and theories, and considered the problem of finding an implicit
characterisation of PH. Identifying the witness function method as a useful
tool for witness extraction at bounded type level, a seemingly important pre-
requisite for characterising PH, we sought to calibrate an appropriate theory
of arithmetic for witness extraction to the µBC characterisation of PH. We

4



presented a conjecture that a modal theory suffices to carry out this character-
isation, based on previous work by ourselves and others[3] [9] [5] and proving
this result constitutes the outstanding work-in-progress.

References

[1] Jeremy Avigad. Gödels functional (Dialectica) interpretation. Handbook of
Proof Theory, 137, 1998.

[2] Patrick Baillot. On the expressivity of elementary linear logic: Charac-
terizing ptime and an exponential time hierarchy. Inf. Comput., 241:3–31,
2015.

[3] Patrick Baillot and Anupam Das. Free-cut elimination in linear logic and
an application to a feasible arithmetic. In Proceedings of CSL 2016, vol-
ume 62 of LIPIcs, pages 40:1–40:18. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2016.

[4] Stephen Bellantoni and Stephen A. Cook. A new recursion-theoretic charac-
terization of the polytime functions. Computational Complexity, 2:97–110,
1992.

[5] Stephen Bellantoni and Martin Hofmann. A new ”feasible” arithmetic. J.
Symb. Log., 67(1):104–116, 2002.

[6] Stephen J. Bellantoni. Predicative Recursion and Computational Complex-
ity. PhD thesis, University of Toronto, 1992.

[7] Samuel R Buss. Bounded arithmetic, volume 86. Bibliopolis, 1986.

[8] Samuel R Buss. The witness function method and provably recursive func-
tions of peano arithmetic. Studies in Logic and the Foundations of Mathe-
matics, 134:29–68, 1995.

[9] Andrea Cantini. Polytime, combinatory logic and positive safe induction.
Arch. Math. Log., 41(2):169–189, 2002.

[10] Peter Clote and Gaisi Takeuti. First order bounded arithmetic and small
boolean circuit complexity classes. In Feasible Mathematics II, pages 154–
218. Springer, 1995.

[11] A. Cobham. On the intrinsic computational difficulty of functions. In
Proc. of the 1964 International Congress for Logic, Methodology, and the
Philosophy of Science, pages 24–30. North Holland, Amsterdam, 1964.

[12] Stephen Cook and Phuong Nguyen. Logical Foundations of Proof Com-
plexity. Cambridge University Press, New York, NY, USA, 1st edition,
2010.

[13] Marco Gaboardi, Jean-Yves Marion, and Simona Ronchi Della Rocca.
An implicit characterization of PSPACE. ACM Trans. Comput. Log.,
13(2):18:1–18:36, 2012.

5



[14] Jean-Yves Girard. Light linear logic. In Logical and Computational Com-
plexity. Selected Papers. LCC ’94., pages 145–176, 1994.

[15] Jean-Yves Girard, Andre Scedrov, and Philip J. Scott. Bounded linear
logic: A modular approach to polynomial-time computability. Theor. Com-
put. Sci., 97(1):1–66, 1992.

[16] Reinhard Kahle and Isabel Oitavem. Applicative theories for the polyno-
mial hierarchy of time and its levels. Ann. Pure Appl. Logic, 164(6):663–
675, 2013.

[17] Jan Kraj́ıček. Bounded arithmetic, propositional logic, and complexity the-
ory. Cambridge University Press, New York, NY, USA, 1995.

[18] Yves Lafont. Soft linear logic and polynomial time. Theor. Comput. Sci.,
318(1-2):163–180, 2004.

[19] Daniel Leivant. A foundational delineation of poly-time. Inf. Comput.,
110(2):391–420, 1994.

[20] Daniel Leivant. Intrinsic theories and computational complexity. In Logical
and Computational Complexity. Selected Papers. Logic and Computational
Complexity, International Workshop LCC ’94, Indianapolis, Indiana, USA,
13-16 October 1994, volume 960 of Lecture Notes in Computer Science,
pages 177–194. Springer, 1995.

[21] Thomas Strahm. Theories with self-application and computational com-
plexity. Inf. Comput., 185(2):263–297, 2003.

[22] Anne Sjerp Troelstra. Realizability. Handbook of Proof Theory, 1998.

[23] Domenico Zambella. Notes on polynomially bounded arithmetic. J. Symb.
Log., 61(3):942–966, 1996.

6


	Introduction and motivation
	State of the art
	Towards an implicit theory for PH
	Implicit programs for PH
	Constraints on induction
	Extraction at ground type
	Completeness for PH
	Putting it all together

	Conclusions

