Bounded Graph Rewriting for Natural Language Processing

Bruno Guillaume
LORIA - Inria Nancy Grand-Est

So far, a large amount of works in Natural Language Processing (NLP) rely on trees as the core
mathematical structure to represent linguistic information (e.g. in Chomsky’s work). However, some
linguistic phenomena do not cope properly with trees. In some former papers, we showed the ben-
efit of encoding linguistic structures by graphs and of using graph rewriting rules to compute on
those structures. Justified by linguistic considerations, the needed graph rewriting setting is char-
acterized by two features: first, there is no node creation along computations and second, there are
non-local edge modifications. In this paper, we explain linguistic motivations, describe briefly the
Graph Rewriting framework considered and some of its formal properties.

1 Introduction

Linguists introduce different levels to describe a sentence in natural language. Starting from a sentence
given as a sequence of sounds or as a sequence of words; among the linguistic levels, two are deeply
considered in literature: the syntactic level (a grammatical analysis of the sentence) and the semantic
level (a representation of the meaning of the sentence). These two representations involve mathematical
structures such as logical formulae, A-terms, trees or graphs.

One of the usual ways to describe syntax is to use the notion of dependency [15]. A dependency
structure is an ordered sequence of words, together with some relations between these words. For in-
stance, the sentence “I see that Mike begins to work” can be represented by the structure below.

COMP
CPL COMP

e

| see that Mike Dbegins to work

SUBJ

There is a large debate in the literature about the mathematical nature of the structures needed for
natural language syntax: do we have to consider trees or graphs? Trees are often considered for their
simplicity; however, it is clearly insufficient. Let us illustrate limitations of tree-representations through
two linguistic examples: “Bill expects Mary to come” and “a book which is hard to read”. In most of
the annotated corpora, dependency strucures are trees. Examples of such trees are given below if we
consider only the relations drawn above the words.

COMP REL o comP
SUBJ 0BJ AUX DET | suBJ i _ATS | AUX__ |
11 ! {) { ! o i H
Bill expects Mary to come a b%ok thch is hard to read
y y
' '
SuBJ ANT OoBJ

But, if we want to interpret the sentences, we have to know on the first example that “Mary” is the
logical subject of “come” and, on the second, that the logical object of the verb “read” is “book” (this is

To appear in EPTCS.

2 Bounded Graph Rewriting for Natural Language Processing

expressed by two relations because of the relative construction). These new dependency relations (drawn
below the words in figures) turn our structures into a DAG in the first case and even a graph with cycle
in the second case (edges in the cycle are drawn with dashed line).

For the semantic representation of natural language, first order logic formulae are widely used.
To deal with natural language ambiguity, a more compact representation of a set of logic formulae
(called underspecified semantic representation) may be used. Dependency Minimal Recursion Seman-
tics (DMRS) [15] is an example of this compact representation. For instance, the DMRS structuregt of the
sentence “The dog whose toy the cat bit barked” is given below.

To describe transformations be-
tween syntactic and semantics struc-
tures, there are solutions based on many
computational models (finite state au-
tomata, A-calculus). It is somewhat
surprising that Graph Rewrite (GR)
have been hardly considered so far ([L0O}
1, 16, [11]]). To explain that, GR im-
plementations are usually considered to
be too inefficient to justify their extra-
generality. For instance, pattern match-
ing does not take linear time where this is usually seen as an upper limit for fast treatment.

However, if one drops for a while the issue of efficiency, the use of GR is promising. Indeed,
linguistic considerations can be most of the time expressed by some relations between a few words.
Thus, they can be easily translated into rules. To illustrate this point, we proposed several applications
of Graph Rewriting to different kinds of NLP tasks: building semantics out of syntax [2]]; building deep
syntactic structures [4] or even parsing [9].

In these studies, we tried to delineate what are the key features of Graph Rewriting in the context
of NLP. Roughly speaking, node creations are strictly restricted, edges may be shifted from one node
to another and there is a need for negative patterns. Based on this analysis, we define here a suitable
framework for NLP (see Section 3)).

Compared to term rewriting, the semantics of graph rewriting is problematic: different choices can
be made in the way the context is glued to the rule application [14]. As far as we see, our notion does
not fit properly the Double-Pushout approach due to unguarded node deletion nor the Sngle-Pushout
approach due to the shift command, as we shall see. Thus we will provide a complete description of our
notion. We have chosen to present it in an operational way.

In practice, we need to verify termination properties: in our NLP applications, any computation
should terminate. If it is not the case, it means that the rules where not correctly drawn.

2 Linguistic motivations

Without any linguistic exhaustiveness, we highlight in this section some crucial points of the kind of
linguistic transformations we are interested in and the relative features of rewriting we have to consider.

Node preservation property. As linguistic examples above suggest, the goal of linguistic analysis
considered is mainly to describe different kinds of relations between elements that are present in the
input structure. As a consequence, the set of nodes in the output structure is directly predictable from the

B. Guillaume 3

input. In practice, these node creations can be anticipated in some enriched input structure on which the
whole transformation can be described as a non-size increasing process.

Edge shifting. In the first example of the introduction (for the sentence “I see that Mike begins to
work”), the verb “begins” is called a raising verb and we know that “Mike” is the deep subject of the
verb “work”; “begins” being considered as a modifier of the verb. To recover this deep subject, one may
imagine a local transformation of the graph which turns the first pattern graph (below on the left) into
the second one (below on the right).

COMP MOD
SuBJ AUX AUX
X Y Z T X Y Z T
begins to begins to

However, in our example above, a direct application of such a transformation leads to the structure below
on the left which is not the wanted structure. Indeed, the transformation should shift what the linguists
call the head of the phrase “Mike begins to work” from the word “begins” to the word “work” with all
relative edges. In that case, the transformation should produce the structure below on the right:

COMP
CPL

SUBJ SUBJ
COMP MOD MOD
SUBJ [CPL M AUX] SUBJ ‘ AUX
o { | o { {
I see that Mike Dbegins to work | see that Mike Dbegins to work

In other words, our transformation may have to specify the fact that all incident edges of some node
(here Y') must be transported to some other node (here 7). We call this operation shift.

To describe our graph rewriting rules, we introduce a system of commands (like in [7]) which ex-
presses step by step the modifications applied on the input graph. The transformation becomes:

COMP

SuBJ AUX del_edge (Y,SUBJ,X); del_edge (Y,COMP,T);
XI Y 7z T add_edge (T,SUBJ,X); add_edge (T,MOD,Y);
begins to shift (Y,T)

Negative conditions. In some situations, rules must be aware of the context of the pattern to avoid
unwanted ambiguities. For instance, when computing semantics out of syntax, one has to deal with
passive sentences; the two sentences below show that the agent “by Mike” is optional.

SUBJ SUBJ
DET AUX DET AUX AGT OBJ
{ [{ It { 1f M]
The banana was eaten The banana was eaten by Mike

In order to switch to the corresponding active form, two different linguistic transformations have to
be defined for these two sentences; but, clearly, the first graph is a subgraph of the second one. The
transformation defined for the short passive should not be applied to the long passive on the right. Thus,
we need to express a negative condition like “there is no out edge labelled by AGT out of the main verb”
to prevent the unwanted transformation to occur.

4 Bounded Graph Rewriting for Natural Language Processing

Long distance dependencies. Most of the lin- | 0BJ

.. . . MOD_REL COMP
gulsFlc transformations can be e.xpressed with suc- DET [l S5 ” 20X l
cessive local transformations like the one above. {] 0

The woman whom John seems to love
Nevertheless, there are some cases where more

global rewriting is required; consider the sentence “The women whom John seems to love”, for which we
consider the syntactic structure on the right. One of the steps in the semantic construction of this sentence
requires to compute the antecedent of the relative pronoun “whom” (“woman” in our example).

The subgraph we have to search in our graph (which 0BJ (OBJICOMP)" _MOD_REL
. . . { 1 1 |
is depicted as a non-local pattern) and the graph modifica- X Y z T
tion to perform are given on the right. The number of OBJ PRO_REL
or COMP relations to consider (in the relation depicted as add_edge (X,ANT,T)

(OBJ|COMP)* in the figure) is unbounded (in linguistics,

this phenomenon is called long distance dependencies); it is possible to construct grammatical sentences
with an arbitrary large number of relations. As we want to stay in the well-known framework of local
rewriting, we use several local transformations to implement such a non-local rule.

oBJ T™P OBJ T™P COMP T™MP MOD_REL

¢ —) (W) (W 1 (
X Y X Y z X Y z X z T

PRO_REL

del_edge (X,TMP,Y) del_edge (X, TMP,Y) del_edge (X,TMP,Z)
add_edge (X,TMP,Y) add_edge (X,TMP,Z) add_edge (X,TMP,Z) add_edge (X,ANT,T)

The second and the third rules above preserve the set of nodes and the number of edges of each kind.
Hence, this kind of rule will require special treatment with respect to termination issues.

3 Graph Rewriting for NLP

In this section, we recall the main results presented in [3] and we let the reader refer to this publication
for technical details.

Graphs The graphs we consider are directed graphs with labels on nodes and labels on edges (both
taken from finite sets). We restrict the edge set: given some edge label e, there is at most one edge labelled
e between two given nodes o and 3. This restriction reflects the fact that, in NLP applications, our edges
are used to encode linguistic information which are relations. We make no other explicit hypothesis on
graphs: in particular, graphs may be disconnected, or have loops.

Graph Morphism Given two graphs P and G, a function ¢ mapping nodes of P into nodes of G is
called a graph morphism if it respects the labelling and if each edge in the input graph P exists in the
image U(P) in G. Moreover, we will consider only injective graph matching where two different nodes
of P cannot be mapped by u to the same node. We write such an injective graph morphism pt : P — G.

As said above, we need to express negative conditions which prevent rule application. Then a rule
left-hand-side is described by a graph P and k graphs Ny, ..., Nj for negative conditions such that for all
1 <i <k, there is an injective morphism 1); : P < N; . Now, the rule apply to a graph G if P is found in
the graph but this matching cannot be extended, for any i, to a mapping of N; into G. Formally, there is
some (U : P G and for all 1 <i <k, there is no morphism 1/ such that n;on/ = u.

Commands The right hand side of a rule is defined by a list of atomic commands which describe
how the matched part of the graph must be modified by the rule application. Atomic commands are:

B. Guillaume 5

label(change node label), add_edge, del_edge, del node and shift. The shift is parametrized by
two pattern nodes X and Y. Its effect on the graph is to modify each edge incident to X and make it
incident to Y.

Graph Rewrite System A Graph Rewrite System (GRS) is composed of a set of rules. A graph G is
called a normal form if no rules of the GRS can be applied to it. When a GRS is applied to a graph, we
consider all finite sequences of rules applications ending with normal forms.

Termination We recall that a GRS is said to be (strongly) terminating whenever there is no infinite
rewriting sequence. Actually, for non-size increasing GRS as presented above, we have immediately
the decidability of non-uniform termination. That is, given some GRS and some graph, one may decide
whether there is an infinite sequence. Indeed, once node labels and edge labels are fixed, there is a finite
number of graphs of a given size. Then if we explore all rewriting paths starting from G, either they are
all finite (and we can conclude for termination) or at some point, we obtain a graph that is equal to a graph
already seen (with a cardinality argument) in the same path (and we can conclude for non-termination).

However, uniform termination —given a GRS, is it terminating?— of non-size increasing GRS re-
mains an open problem. Uniform termination was proved undecidable when we drop the property of
non-size increasingness (cf. Plump [[13]]). As a consequence, there is a need to define some termina-
tion method pertaining to non-size increasing GRS. Compared to standard work in termination [12} 8],
there are two difficulties: first, our graphs may be cyclic, thus forbidding methods developed for DAGs
such as term-graphs. Second, using term rewriting terminology, our method should operate for some
non-simplifying GRS, that is GRS for which the output may be “bigger” than the input. Indeed, the NLP
programmer sometimes wants to compute some new relations, so that the input graph is a strict sub-graph
of the resulting graph.

In [3], we propose a method based on weight analysis. As is it possible to add edges, we consider
negative weight for such edges. As a consequence the weight of a graph can be negative. But thanks
to cardinality consideration again, we can give a lower bound for these negative weights and prove
termination for weighted GRS. The major difficulty of the proof is linked to the shift commands which
modified an unbounded number of edges in one step; some abstraction of the set of possible environments
is needed to prove termination. Moreover, we show that weighted GRS terminates in quadratic time and
that it is decidable to know if a given GRS is weighted or not. Systems like the one described above for
implementation of long distance dependencies cannot be weighted. We propose lexicographic extension
of the weight analysis method with which it is possible to prove termination of this system.

4 Conclusion

We have presented a Graph Rewriting formalism, dedicated to NLP. In our applications, we consider
set of small GRS (called modules), each of these modules deals with a linguistic aspect of the global
transformation. Most of the modules written in practice are confluent and so we can compute efficiently
the unique normal form with these modules. We conjecture that this property is decidable, but we do not
have nowadays automatic procedure to ensure the confluence of a module.

Up to now, finite sequences of modules are considered but we ran into cases where some couple of
modules must be ordered in one way for one linguistic example and in the other way on another example.
We can handle these examples with sequences where the same module is used several times. A better
solution would be to add a more powerful language in which we can express stragies like the iteration of
a sub-sequence of modules until normal forms are reached.

Bounded Graph Rewriting for Natural Language Processing

In recent years, most of the works in NLP focus on statistical and machine learning based approaches

which are well-adapted to these applications because natural language is full of ambiguities and often
external knowledge may be needed to resolve these ambiguities. This knowledge may be captured by
learning methods using a large set of linguistic examples. At a first sight, our approach which is rule-
based and does not use statistical information may not be able to deal with theses problems. Based
on several applications to real size NLP problem we have conducted, we believe that our approach can
be combined with machine learning based methods. Indeed, with non-confluent modules we can easily
defined by rules a set of linguistically correct interpretations of a given input and use a statistical approach
to rank these interpretations.

References

(1]

(2]

(3]

(4]

(5]

(6]
(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

B. Bohnet & L. Wanner (2001): On using a parallel graph rewriting formalism in generation. In. EWNLG
’01: Proceedings of the 8th European workshop on Natural Language Generation, Association for Computa-
tional Linguistics, pp. 1-11, doii10.3115/1117840.1117847.

G. Bonfante, B. Guillaume, M. Morey & G. Perrier (2011): Modular Graph Rewriting to Compute Semantics.
In: IWCS 2011, Oxford, UK, pp. 65-74.

Guillaume Bonfante & Bruno Guillaume (2013): Non-simplifying Graph Rewriting Termination. In Rachid
Echahed & Detlef Plump, editors: TERMGRAPH, 7th International Workshop on Computing with Terms
and Graphs, Rome, Italy, pp. 4-16. Available at https://hal.inria.fr/hal-00921053|

Marie Candito, Guy Perrier, Bruno Guillaume, Corentin Ribeyre, Karén Fort, Djamé Seddah & Eric Ville-
monte De La Clergerie (2014): Deep Syntax Annotation of the Sequoia French Treebank. In: LREC, Reyk-
javik, Iceland. Available athttps://hal.inria.fr/hal-00969191.

A. Copestake (2009): Invited Talk: Slacker Semantics: Why Superficiality, Dependency and Avoidance of
Commitment can be the Right Way to Go. In: Proceedings of EACL 2009, Athens, Greece, pp. 1-9.

D. Crouch (2005): Packed Rewriting for Mapping Semantics to KR. In: Proceedings of IWCS.

R. Echahed (2008): Inductively Sequential Term-Graph Rewrite Systems. In: Proceedings of the 4th interna-
tional conference on Graph Transformations, ICGT 08, Springer-Verlag, Berlin, Heidelberg, pp. 84-98.

E. Godard, Y. Métivier, M. Mosbah & A. Sellami (2002): Termination Detection of Distributed Algorithms
by Graph Relabelling Systems. In A. Corradini, H. Ehrig, H.-J. Kreowski & G. Rozenberg, editors: ICGT,
Lecture Notes in Computer Science 2505, Springer, pp. 106-119, doi:10.1007/3-540-45832-8_10.

Bruno Guillaume & Guy Perrier (2015): Dependency Parsing with Graph Rewriting. In: IWPT 2015, 14th
International Conference on Parsing Technologies, Bilbao, Spain, pp. 30-39. Available at https://hal.
inria.fr/hal-01188694.

E. Hyvonen (1984): Semantic Parsing as Graph Language Transformation - a Multidimensional Approach
to Parsing Highly Inflectional Languages. In: COLING, pp. 517-520, doii10.3115/980491.980601.

V. Jijkoun & M. de Rijke (2007): Learning to Transform Linguistic Graphs. In: Second Workshop on
TextGraphs: Graph-Based Algorithms for Natural Language Processing, Rochester, NY, USA.

D. Plump (1995): On Termination of Graph Rewriting. In: Proceedings of the 21st International Workshop
on Graph-Theoretic Concepts in Computer Science, WG °95, Springer-Verlag, London, UK, pp. 88-100,
doii10.1007/3-540-60618-1_68.

D. Plump (1998): Termination of Graph Rewriting is Undecidable. Fundamenta Informaticae 33(2), pp.
201-209, doii10.3233/FI-1998-33204.

G. Rozenberg, editor (1997): Handbook of Graph Grammars and Computing by Graph Transformations,
Volume 1: Foundations. World Scientific.

L. Tesniere (1959): Eléments de syntaxe structurale. Librairie C. Klincksieck, Paris.

http://dx.doi.org/10.3115/1117840.1117847
https://hal.inria.fr/hal-00921053
https://hal.inria.fr/hal-00969191
http://dx.doi.org/10.1007/3-540-45832-8_10
https://hal.inria.fr/hal-01188694
https://hal.inria.fr/hal-01188694
http://dx.doi.org/10.3115/980491.980601
http://dx.doi.org/10.1007/3-540-60618-1_68
http://dx.doi.org/10.3233/FI-1998-33204

	Introduction
	Linguistic motivations
	Graph Rewriting for NLP
	Conclusion

