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Introduction. Probabilistic models are more and more pervasive in computer science [16, 18, 19].
Moreover, the concept of algorithm, originally assuming determinism, has been relaxed so as to allow
probabilistic evolution since the very early days of theoretical computer science [15]. All this has given
impetus to research on probabilistic programming languages, which however have been studied at a large
scale only in the last twenty years, following advances in randomized computation [17], cryptographic
protocol verification [2, 3], and machine learning [11]. Probabilistic programs can be seen as ordi-
nary programs in which specific instructions are provided to make the program evolve probabilistically
rather than deterministically. The typical example are instructions for sampling from a given distribution
toolset, or for conditioning probabilistic choice on the values observed concretely. Our line of work stud-
ies functional probabilistic programming, following the recent and successful introduction of languages
such as Anglican [20] and Church [11].

One of the most crucial properties a program should satisfy is termination: the execution process
should be guaranteed to eventually end. In (non)deterministic computation, termination is a boolean
predicate on programs: any (non)deterministic program either terminates – in must or may sense in the
nondeterministic case – or it does not. In probabilistic programs, on the other hand, any terminating
computation path is attributed a probability, and thus termination becomes a quantitative property. It is
therefore natural to consider a program terminating when its terminating paths form a set of measure
one or, equivalently, when it terminates with maximal probability. This is dubbed “almost sure termina-
tion” (AST for short) in the literature [4], and many techniques for automatically and semi-automatically
checking programs for AST have been introduced in the last years [9, 10, 7, 6]. All of them, however, fo-
cus on imperative programs; while probabilistic functional programming languages are nowadays among
the most successful ones in the realm of probabilistic programming [11]. It is not clear at all whether the
existing techniques for imperative languages could be easily applied to functional ones, especially when
higher-order functions are involved.

In this talk, we introduce two type systems for a simple affine and probabilistic λ -calculus with
recursion which are sound for AST: typable terms are AST. Both systems are not complete, as this would
make them undecidable. In future work, we will study type inference for both systems and we hope that
it will be decidable at least for the first. The first type system features a monadic system of distribution
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types, built from the systems of sized types introduced in the deterministic case [13, 1], and is already
presented in a long version [8] and in a ESOP 2017 paper [14]. The second type system is based on Xi’s
approach using dependent types [21] and is ongoing work. It is more general than the first for that it
allows terms to contain conditional statements, whereas the first system only allows a form of pattern-
matching on integers corresponding to a test of equality to zero. The use of dependent types allows to
formulate the second system without needing to introduce distributions of types in the inference rules.

First System: Monadic Affine Sized Types. The first system is a system of monadic affine sized types
which can be seen as a non-trivial variation on Hughes et al.’s sized types [13], whose main novelties are
the following:
– Types are generalised so as to be monadic, this way encapsulating the kind of information we need to

type non-trivial examples. This information, in particular, is taken advantage of when typing recursive
programs.

– Typing rules are affine: higher-order variables cannot be freely duplicated. This is quite similar to
what happens when characterising polynomial time functions by restricting higher-order languages
akin to the λ -calculus [12]. Without affinity, the type system is bound to be unsound for AST.

AST is checked by a special guard on the typing rules for letrec:{
(Nats j → ν [s j/i])

p j
∣∣ j ∈J

}
induces an AST sized walk

Γ | f :
{
(Nats j → ν [s j/i])

p j
∣∣ j ∈J

}
`V : Nat̂i→ ν [̂i/i]

letrec
Γ, ∆ |Θ ` letrec f = V : Natr→ ν [r/i]

The notion of AST sized walk defined here means that the recursive calls of the function generate a
Markovian process, which should be almost-surely terminating. Let us illustrate this notion of sized
walk on the example of a biased random walk

MBIAS =
(
letrec f = λx.case x of

{
S→ λy. f (y)⊕ 2

3
( f (SSy)))

∣∣ 0→ 0
})

n
¯

(1)

which calls itself recursively on an input of size lesser by 1 with probability 2
3 and on size greater than

1 with probability 1
3 . The associated sized walk is the random process which loops forever on 0 and,

on an integer n+ 1, jumps to n with probability 2
3 and to n+ 2 with probability 1

3 . This sized walk is
AST, meaning that it reaches 0 with probability 1, and this implies in turn, by soundness of our type
system, that the term itself is AST. We can also type examples in which the termination argument is
more involved than a strict decreasing ranking function: for instance, the term

MUNB =
(
letrec f = λx.case x of

{
S→ λy. f (y)⊕ 1

2
( f (SSy)))

∣∣ 0→ 0
})

n
¯

(2)

is AST because the associated sized walk (which is the usual one-dimensional random walk) is AST,
even if the average size of the recursively-called input is not decreasing.

This first type system is already presented in a long version [8] and in a ESOP 2017 paper [14] ; we
plan to briefly introduce it as a first step towards its generalization.

Second System: Using Dependent Types. The second system is a generalization of the first, based
no longer on sized types, but on dependent types in the spirit of Xi’s work [21]. First of all, we allow a
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slightly more general language than in the first case. In the previous type system, lambda-terms where
manipulating natural numbers defined from successor and zero constants (the idea being that the system
could be adapted to all inductive types, natural numbers being a simple example, but this generalization
is left for future work), together with a pattern-matching operation. Here we consider a signature of
constants which can contain integers (as built-in constants) and relations on them, and we introduce an
“if” construct which is more general than the simple pattern-matching of the previous case. In addition
to this, this second type system has two main novelties compared to the first one:
• Type dependency allows to get rid of distribution types. Indeed, distributions of types where

needed to type precisely a probabilistic sum of terms M⊕p N with different size informations on
M and N (without this subtlety, the system was bound to capture termination and not almost-sure
termination). The use of sum types allows to give a sum type to both M and N in this case, and thus
to give this same sum type to M⊕p N. The size information still appears, but as a size annotation
inside the term. This greatly simplifies the system.

• On the other hand, termination is no longer checked by a sized walk, which was a kind of slightly
generalized one-dimensional random walk, but by a much more subtle machinery called proba-
bilistic transition systems (PTS). These are systems in which the transitions are guarded by logical
formulas, and after each guard a probabilistic choice is made on the successor states. We use these
PTS to model more accurately programs and notably use as much information as possible from
the choices made in the if constructs. For each letrec construct, a PTS is built from the definition
of the recursive function of interest; and the typing rule for letrec checks that this PTS is AST. We
rely on existing results on termination of PTS such as [5] to establish the fact that a given PTS is
AST.

This second system is ongoing work. If time allows, we will explain the main changes in the re-
ducibility proof from the previous case.

Future work. There are two main directions for future work. The first one is to extend the class of
typable problems. It will certainly be difficult to get rid of the affinity constraint, as it would require to
guard the letrec rule with Markovian processes which are very complex and do not seem to have been
studied by specialists. However, extensions to programs with all inductive data types seem very easy,
and we have ideas for extensions to programs with coinductive data types. It would also be possible
to consider programs enriched with a non-deterministic operator in addition to the probabilistic one.
The second direction would be to adapt the type systems existing for capturing complexity classes, and
notably PTIME, to capture programs terminating in probabilistic polynomial time (or the probabilistic
analog of other complexity classes captured by type systems).

Structure of the Talk

We plan to give the talk as follows, depending on the allowed time:
• Introduction of the probabilistic λ -calculus and of its semantics,

• Introduction of the system of monadic affine sized types for AST termination,

• Necessity of affinity for soundness on an example,

• If time allows, main elements of the proof of soundness of the type system: reducibility candidates
parameterized by a probability, continuity property on these sets, relation between these sets and
sized walks, treatment of the letrec construct in the reducibility proof.
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• Introduction of PTS and of the system with dependent types ; main differences with the previous
system

• If time allows, we give the relation between PTS and reducibility candidates which makes the
reducibility proof work.
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