The Collapse of Sequential to Multiset Intersection Type
Systems is Surjective
IRIF and Université Paris Diderot

pvial@irif.fr

Pierre Vial

We show that every (finite or not) typing derivation of system %, using non-idempotent intersec-
tion, which is the infinitary version of de Carvalho’s system %, can be represented in a rigid, non-
idempotent intersection type system S. Namely, whereas non-idempotent intersection is represented
by multisets in system £, system S resort to families of types indexed by integers, called tracks. The
rigidity is here related to the fact that those indexes matter as well as the order in which the types are
quoted in a family of types. Sequential constructions naturally collapse on multisets constructions
and any S-derivation easily collapses on a Z-derivation.

System S has more fine-grained features that those of Z, that allow us to answer some theoretical
questions in infinitary frameworks, but the use of sequential constructions make the rule typing the
application very syntactical compared to that of System Z. It is not obvious that, conversely, the %-
derivation may be lifted into a S i.e. if we can rewrite any multiset-based derivation into a sequential
derivations. If it were not, System S would be more fine-grained but having a narrower span than that
of System Z.

We prove that indeed, every %-derivation is the collapse of a S-derivations. For that, we consider
an intermediate type system, featuring labelled trees as types as S does, but in which the application
rule is relaxed by the use of isomorphisms of labelled trees encoding the rewriting of multiset types.
We prove that every intermediate derivation using complex isomorphisms is itself isomorphic to a
derivation of S, that uses only identity isomorphisms between trees. The main technical contribution
of this paper is managing to work in a coinductive framework that in which no kind of productivity
is ensured by some guard condition.

1 Introduction

1.1 Types Systems and Normalization

An important dynamical property of A-terms is normalization: for instance, a term is Head Normalizing
(HN) if it can be reduced to a Head Normal Form (i.e. a term of the form Ax; ...x,.xt;...t,) and a term
is Weakly Normalizing (WN) when it can be reduced to a Normal Form (i.e. a term without redex). A
term ¢ is Strongly Normalizing if there is not infinite reduction paths starting from ¢.

Simple type systems for A-calculus were introduced by Church. Typing consists in assigning formu-
las called types to the variables of a term ¢ and then computing the type of while checking that the typing
rules (of the system) are respected. These typing rules usually emulate Natural Deduction. For instance,
if ¢ and u respectively have types A — B and A, then ru will have type B (modus ponens). Turing and
Curry proved that, if a term is typable in the original system (that we call Simple), then it is normalizing.

However, it is not difficult to find normalizing terms — even normal forms — that are not typable. First,
it is impossible to type ¢ u in Simple if # and u have the same type (the equality A = A — B is impossible).

To appear in EPTCS.

2 The Collapse of Sequential to Multiset Intersection

Thus, it is impossible to type the normal form xx or the term A = Ax.xx.

Intersection Type Systems (ITS), introduced by Coppo and Dezani [5] are used to statically char-
acterize classes of normalizing terms inside different calculi. In contrast with Simple, in an ITS, we will
have: for all term ¢, ¢ is normalizing iff it is typable. The main feature of an ITS is the following: each
time we meet an occurrence of a variable x, we may assign to it a new type. For instance, xx becomes
easily typable (if x receives the types A and A — B, then we can type xx with B). Thus, intersection type
allows a kind of polymorphism.

The types that are assigned to a variable are usually collected” by an intersection operator A. Here,
this operator on the set of types will always be assumed to be associative and commutative and to have a
neutral element 1,. Let us discuss now the possible idempotency of this operator.

1.2 Idempotent and Non-Idempotent Intersections

The operator A is said to be idempotent if for all type A, ANA = A.

The original type systems feature idempotent intersections. In that case, the types AABAA and AAB
are equal.

Let us call strict (after van Bakel [9]]) a type A that is not an intersection i.e. A type that is not equal
BAC for some B, C # 1, (thus, a strict type is a type that is atomic for the intersection operator). If
the A; and the B; are strict, by associativity, commutativity, idempotency, we have Ajc/A; = A jcyB; iff
{Ai}icr = {Bj}jes. Thus, the intersection A;c;A; of strict types A; may be written {A; };c; and called a
set type. Moreover, the intersection {A;}ic; A {B;}jcs of two set types is (AicjAi) A (AjesBj) i.e. it is
{Ai}icrU{Bj} jes. Thus, in the idempotent case, the intersection operator corresponds to the set-theoretic
union!

Gardner and de Carvalho [7, 4] provided a new characterization of the set of HN terms by means
of a type system %, which resorted to non-idempotent intersection types. This framework allowed to
replace Tait’s Realizability Argument — used to prove the implication “Typable = Normalizable” — by a
considerably simpler, arithmetical one.

Concretely, non-idempotency means here that types occur with a multiplicity in an intersection type.
Namely, if the o; and the 7; are strict, we have Aic;0; = Aje;T; iff [0i]ier = [7j] jes. The intersection of
strict types o1, . .., 0, may be represented by the multiset [0y, ..., G,]: the order of this enumeration does
not matter, but the number of occurrences of a type does, e.g. we have [0, T, 0] = [0, 0, 7| # [0, 7]. In
system %, the assignments x : [0, T, 0] and x : [0, 7| cannot be interchanged, and the application rule
accumulates the typing information in the environments: if x is assigned [0}, 02, 03], [02, 04] and [04] in
the premises of an application rule, then it will be assigned their multiset sum i.e. [0}, 02, 02, 03, O4, 04
in its conclusion.

Thus, in system %y, a type can be regarded as a resource, which the quantitative argument proving
that typability head-normalizability relies on: when a fyped redex is reduced inside a derivation I1, it
yields a new derivation IT (typing the reduced term) while strictly decreasing a positive integer measure.
It means that, at some point, there are no more typed redexes, so that the reduced is a (partial) NF.

1.3 Type Characterization in an Infinitary Framework

System %, drew in the last year a great interest towards quantitative — resource aware — type systems
and it paved the road for many works [} 12} [3], either simplifying previous results or establishing new

Pierre Vial 3

ones.

In [[12], we investigated the possibility of a type characterization of weak normalizability in A%, an
infinitary A-calculus which was introduced in [8]].

The finitary type system %, can be given an infinitary variant % by taking its rules coinductively
(instead of inductively) and allowing multisets to be infinite. We may notice & allows irrelevant infinite
derivation e.g. some non-head normalizing terms are typable in %. This observation suggested to use a
validity criterion relying on the notion approximability to discard irrelevant proofs. However, we showed
that this notion of approximability could not be formulated in %, roughly because it is not possible to
distinguish two occurrences of the same type in a multiset (see next section). This led us to resort to rigid
constructions.

1.4 Rigid Non-Idempotent Intersections

In order to be able to characterize the of WN terms in an infinitary A-calculus, we used an infinitary type
assignment system S with non-idempotent intersections [12].

System S differs from the infinitary version & of the finitary type system %, in that, the intersections
are rigid in S: the multisets of types (called multiset types) used in & are (coinductively) replaced by
families of types indexed by integers (those integers are called tracks). Such a family of types is called
a sequence type. For instance, the sequence type (Tk)ke{z_g’g}, with T, =8,73 =T and Ty = §, is an
intersection of two occurrences of type S (placed on tracks 2 and 8) and one occurrence of type T (placed
on track 3). This sequence type is also denoted (2-S,3-T,8-S). Notice that here, we have the “pointers”
2 and 8 to distinguish the two occurrences of S. We have a “disjoint union” operator & for sequences
e.g. (2-S,-7) W (8-S) = (2-5,3-T,8-S). In constrast, with multisets, we have [0, 7]+ [0] = [0, 0, 7], but,
in this equality, we have no way to relate one occurrence of ¢ in [0, 0, 7] to [0, 7] rather than [o] and
vice versa.

To be equal, two S-types need to be syntactically equal — let us say informally that the equality is
tight in S — e.g. (Ti)rep23.8) 7 (T} Jkeq230) With Ty = S, T; = T and Ty = S, whereas equality between
multisets types does not depend of the order of enumeration of its elements or the particular form with
which we write the types: let us say the equality between multisets is loose. Thus, in system S, types and
contexts are very low-level and the application typing rule can be used only in case of tight equality.

Remark. The second use [10] that we made of System S is proving that every term was typable in the
infinite System %. This is not an obvious statement as for other infinitary type system, because System
Z is relevant (it forbids weakening) and there is not trivial method to type a non-normalizing term.
We could not reason directly on System % because we needed to describe the support of a prospective
derivation of a given term t and those of the types nested in the potential derivation before we decorated
them. But with multiset constructions, it is impossible to see the support of a derivation as a set of
pointers, whereas it is very natural with sequential constructions. This work provided a new model for
pure A-calculus.

1.5 Reduction Choices

Regarding Subject Reduction, intersection type systems are usually not deterministic: if t —t' and ITis a
derivation typing r = (Ax.r)s, then, the proof of the subject reduction lemma can yield several derivations
IT typing ¢’ = r[s/x|. In that case, we say there are reduction choices.

4 The Collapse of Sequential to Multiset Intersection

For instance, the type system & is not deterministic: when we reduce 7 to ', there are several natural
ways to produce a derivation IT. It is possible as soon as the variable x has been assigned several times
the same type o. In sharp contrast, the use of tight equalities in system S makes there is only one built-in
way — under the same hypotheses — to produce a derivation typing #'. Thus, system S is deterministic. We
even say that the unique reduction choice is frivial, because, as it will turn out (§??), it is based upon an
identity isomorphism: roughly speaking, reduction is based on the track equality e.g. if there is an axiom
leaf typing x using track 8, then it will be substituted by an argument derivation located on track 8 and
so on, even when x has been assigned several times the type S (with § = Sg).

The Question of Representability

Rigid types, sequence types and derivations (of system S) can be naturally collapsed into regular types,
multisets types and derivations (of system %). Actually, Z-types and multisets types are easily identi-
fiable to equivalence classes of rigid (sequence) types. We (coinductively) collapse families indexed by
integers into multisets. For instance, (Ti)rcx = (T})kek’ Whenever there is a bijection o : K — K’ (called
a track resetting) s.t. T(;(k) = Ti. With the above examples, (Ti)rei238) = (T})ke{2,3.0- The equivalence
relation coinductively generated by this base rule allows to see the set of Z-types (resp. multiset types)
as a quotient of the set of rigid types (resp. sequence types). When a rigid type T (resp. sequence type
F) is collapsed on the Z-type T (resp. the multiset type [0;];c/), we say that T (resp. F) is a parser of T
(resp. [oi]ier).

The application rule of system Z is based upon a loose equality: if, inside a rigid derivation P (of
system S), we collapse every (sequence) type and apply the same recipe, we obtain a %-derivation II.
However, it is not clear that, starting from a #-derivation I, we can find a rigid P that collapses into IT.
For instance, it would demand that we can choose a good parser for every type introduced in an axiom
rule, so that we have a (tight) equality in all the applications rules. Since II can be infinite in depth or in
width and the typing constraints propagate in complicated ways inside the derivation, the possibility of
such a good choice is not easily granted.

Moreover, another feature of S can seem limited: in contrast to system %, the substitutions inside
an S-derivation are performed deterministically, while we reduce the judged term. This can been seen
as restrictive, because, even when there are several occurrences of the same type, substitution can be
processed only in one way in system S, which may be consider as a restriction compared to system %.
So it raises the following question: can we built a rigid representative P of an &% -derivation IT w.r.t. any
reduction choice we would have done “by-hand” ? If we perform a reduction choice at each step of a
reduction sequence, we speak of reduction choices sequence.

1.6 Contributions

We show that:
e Any guantitative derivation I, approximable or not, has a rigid quantitative representative P.

e Any reduction choices sequence of length < @ can be built-in inside such a representative P,
without assuming this reduction sequence to be sound (strongly converging, [8]])

We proceed this way: we represent every quantitative Z-derivation Il by means of an hybrid deriva-
tion P, (in a new type system Sy) in which the tight equality (in the @-rule) is loosened and replaced by
a congruence. Next, we endow those hybrid derivations with rigid, deterministic reduction choices (to
be called interfaces), yielding operable derivations (in another type system S,). We show then that every

Pierre Vial 5

“by-hand” reduction sequence of (possible) infinite length can be encoded in an interface. The trivial
derivations are the operable derivation (system S) in which the interface uses only identity isomorphisms.
Finally, we prove that every operable derivation is isomorphic to a trivial derivation. This result concludes
the proof of the Representation Theorem, stating that our non-idempotent, rigid intersection type system
S has more expressive power than the system ..
The most difficult point is the last one, i.e. establishing every &% -derivation has a trivial S-representative.

In a finitary framework, this could be possible by studying first the derivations typing a NF (for which
representation is granted [[12]]), and then proceeding by subject expansion. However, as we have hinted
at, typability in system % does not imply any kind of normalization (some non-HN terms can be typed).
So we will resort to ad hoc notions of referent bipositions, syntactic polarity and collapsing strategy
(which is a partial reduction strategy) to reach our goal. It is to be noticed that the method we present
does not rely on any kind of notion of productive reduction (see for instance [6]]), as in other infinitary
frameworks. The proofs may be found in [11].

References

[1] A.Bernadet and S. Lengrand. Non-idempotent intersection types and strong normalisation. Logical Methods
in Computer Science, 9(4), 2013.

[2] A. Bucciarelli, D. Kesner, and S. R. D. Rocca. The inhabitation problem for non-idempotent intersection
types. In Theoretical Computer Science - 8th IFIP TC 1/WG 2.2 International Conference, TCS 2014, Rome,
Italy, September 1-3, 2014. Proceedings, pages 341-354, 2014.

[3] A. Bucciarelli, D. Kesner, and D. Ventura. Strong normalization through intersection types and memory. In
Proc. of the 10th Int. Workshop on Logical and Semantical Frameworks, with Applications (LSFA), ENTCS,
Natal, Brazil, August-September 20135.

[4] D. D. Carvalho. Sémantique de la logique linéaire et temps de calcul. PhD thesis, Université Aix-Marseille,
Nov. 2007.

[5]1 M. Coppo and M. Dezani-Ciancaglini. An extension of the basic functionality theory for the A-calculus.
Notre Dame Journal of Formal Logic, 21(4):685-693, 1980.

[6] J. Endrullis, H. H. Hansen, D. Hendriks, A. Polonsky, and A. Silva. A coinductive framework for infini-
tary rewriting and equational reasoning. In 26th International Conference on Rewriting Techniques and
Applications, RTA 2015, June 29 to July 1, 2015, Warsaw, Poland, pages 143-159, 2015.

[7] P. Gardner. Discovering needed reductions using type theory. In Theoretical Aspects of Computer Software,
International Conference TACS *94, Sendai, Japan, April 19-22, 1994, Proceedings, pages 555-574, 1994.

[8] R. Kennaway, J. W. Klop, M. R. Sleep, and F. de Vries. Infinitary lambda calculus. Theor. Comput. Sci.,
175(1):93-125, 1997.

[9] S.van Bakel. Intersection type assignment systems. Theor. Comput. Sci., 151(2):385-435, 1995.

[10] P. Vial. Coinductive intersection types are completely unsound/http://arxiv.org/abs/1612.06740,
2016.

[11] P. Vial. The collapse of the sequential intersection type system on the multiset intersection type is surjective,
http://arxiv.org/abs/1610.06399, 2016.

[12] P. Vial. Infinitary intersection types as sequences: a new answer to klop’s question, http://arxiv.org/
abs/1610.06409, 2016.

http://arxiv.org/abs/1612.06740
http://arxiv.org/abs/1610.06399
http://arxiv.org/abs/1610.06409
http://arxiv.org/abs/1610.06409

	Introduction
	Types Systems and Normalization
	Idempotent and Non-Idempotent Intersections
	Type Characterization in an Infinitary Framework
	Rigid Non-Idempotent Intersections
	Reduction Choices
	Contributions

