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Plan of the talk

Part 1: Cost analysis in sequential programs

Generation of cost relations
Inference of upper bounds

Part 2: Cost analysis in concurrent programs

Loops with concurrent interleavings
May-happen-in-parallel analysis
Rely-guarantee reasoning

Part 3: Cost analysis of distributed systems

Dynamic distributed locations
Resource analysis with cost centers
New performance indicators
Parallel and peak cost
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Part 1: Resource Analysis of Sequential Code

Sequential Programs
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Resource Analysis of Sequential Code

Program
(Cost Model)

Upper Bound

while (l != null) {
l = l.next;
new C();
}
(number of instructions)

1 + 2∗size(l)
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Resource Analysis of Sequential Code

Program
(Cost Model)

Upper Bound

A Classical approach [Wegbreit’75] to
cost analysis consists of:

1. expressing the cost of a program
by means of recurrence
relations.

2. solving the relations by
obtaining a closed-form upper
bound (a function of the input
data sizes).
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Summary Sequential

The process involves a series of transformations and analyses:

Transformation into recursive form
Size analysis
Generation of cost relations
Ranking functions and maximization

We cover polynomial, exponential, logarithmic complexities

From now on: given task m, we assume cost Um
Main references: ESOP’07, SAS’08

Handling fields: SAS’10, FM’11
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Part 2: Concurrent Programs

Concurrent Programs
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Adding Concurrency

p
Different tasks interleave
execution in the same processor

Asynchronous task invocations
m(x̄)

Non-preemptive concurrency by
explicitly releasing the processor
release

Shared memory among the
different tasks
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Resource Analysis with interleavings (I)

p

release

f=3
f=2
f=1

release

f=*

f x y whi le ( f >0){
. . .
f = f −1;
r e l e a s e ;

}

1st approach: assume that
shared memory changes after
every release

Loss of information, poor results
→ loops based on shared
variables cannot be bound.
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Resource Analysis with interleavings (II)

p m

f=3
f=2
f=1

release

release

x=3
y=7

f x y 1 whi le ( f >0){
2 . . .
3 f = f −1;
4 r e l e a s e ;
5 }

6 x = 3
7 y = 7 ;

p()

m()

2nd approach: use a
May-Happen-in-Parallel analysis
to infer instructions pairs that can
interleave: . . . (4, 6), (4, 7) . . .

Shared memory can only change
if an update can interleave with
release → improve results
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Resource Analysis with interleavings (III)

p

f=3
f=2
f=1

release

m

f x y
1 whi le ( f >0){
2 . . .
3 f = f −1;
4 r e l e a s e ;
5 }

6 whi le ( x>0){
7 x = x−1;
8 f = 1 0 0 ;
9 r e l e a s e ;
10 }

p() m()

3rd approach: interleavings that
modify shared memory are safe if
they can only happen a finite
number of times

Rely-guarantee reasoning:
max(f )× (max(x) + 1)
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Summary Concurrent Programs

Basic resource analysis for sound results APLAS’11

May-happen-in-parallel analysis FORTE’12, LPAR’13,
SAS’15

Rely-guarantee reasoning ATVA’13, JAR’17

From now on: given a concurrent task m, we assume cost Um
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Part 3: Distributed Systems

Distributed Systems
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Adding distribution

x

X = newLoc to create a
distributed location

A location has a queue of pending
tasks and one active task

Multiple locations can be created
dynamically y=newLoc; z=newLoc

Asynchronous tasks can be added
among locations: x.m(w) (in z)
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Resource analysis with cost centers

x

p q m

y

r p

z

t u

Using cost analysis so far:
C = Up + Uq + Um + Ur + Up + · · ·+ Ut + Uu

We aim at having the cost at the level of
distributed components
Cx = Up + Uq + Um Cy = Ur + Up . . .

Idea: use cost centers to separate the cost
c(x), c(y), c(z)

When we analyze an instruction i , its cost Ci

is added to the cost center of the x
component: c(x) · Ci

Global cost expression:

c(x)·(Up+Uq+Um) + c(y)·(Ur+Up) + c(z)·(Ut+ . . .)
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Cost centers of different types

x

p q m

y

r p

z

t u

Cost centers are a general concept that
allows us to distinguish within the UB
different aspects:

Component cost centers: c(x), c(y)..

Program point cost centers: cost
center c(pp) per pp:acquire(e)
for (x=0;x<n;x++) pp:acquire(e)

c(pp) ∗ n ∗max(e) +c(pp2) ∗ ...

Task level centers: cost center c(m)
per method

c(m) ∗ Cm+c(p) ∗ ...

Multi-component cost centers: cost
centers of the form c(z , x), i.e., when we
find an instruction x.m(w) in z we do
c(z , x) ∗ size(w)
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Part 3: Distributed Systems

Parallel Cost
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Parallel Cost

Serial cost: accumulate costs from different locations

Limitation: ignore the parallelism of the distributed execution
model.

New analysis: infer the parallel cost of distributed systems
(maximum cost between parallel tasks)

Use: know if an application succeeds in exploiting the
parallelism of the distributed locations, overall resource
consumption
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Parallel Cost

void m ( i n t n ) {
. . . // m1

x . p ( n ) ;
. . . // m2

y . q ( n ) ;
. . . // m3

}
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Parallel Cost
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Parallel Cost

void m ( i n t n ) {
. . . // m1

x . p ( n ) ;
. . . // m2

y . q ( n ) ;
. . . // m3

}

P1 = Um1 + Um2 + Um3

P2 = Um1 + Up

Trace 3©
o x y

m1

m2

m3

p

q

P3

P3 = Um1 + Um2 + Uq

The parallel cost of the program is
the maximum of all possible traces:

P = max(P1,P2,P3) < Serial
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Parallel Cost Analysis

Program Distributed Flow Graph

Elvira Albert, UCM Resource Analysis 27/37



Parallel Cost Analysis

Program Distributed Flow Graph

m1

m2

m3

p

q

Elvira Albert, UCM Resource Analysis 27/37



Parallel Cost Analysis

Program Distributed Flow Graph

m1

m2

m3

p

q

m1

m2

m3

Elvira Albert, UCM Resource Analysis 27/37



Parallel Cost Analysis

Program Distributed Flow Graph

m1

m2

m3

p

q

m1

m2

m3

N1={m1,m2,m3}

Elvira Albert, UCM Resource Analysis 27/37



Parallel Cost Analysis

Program Distributed Flow Graph

m1

m2

m3

p

q

m1 p

N1={m1,m2,m3}

Elvira Albert, UCM Resource Analysis 27/37



Parallel Cost Analysis

Program Distributed Flow Graph

m1

m2

m3

p

q

m1 p

N1={m1,m2,m3} N2={m1, p}

Elvira Albert, UCM Resource Analysis 27/37



Parallel Cost Analysis

Program Distributed Flow Graph

m1

m2

m3

p

q

m1

m2 q

N1={m1,m2,m3} N2={m1, p}

Elvira Albert, UCM Resource Analysis 27/37



Parallel Cost Analysis

Program Distributed Flow Graph

m1

m2

m3

p

q

m1

m2 q

N1={m1,m2,m3} N2={m1, p} N3={m1,m2, q}

Elvira Albert, UCM Resource Analysis 27/37



Parallel Cost Analysis

Program Distributed Flow Graph

m1

m2

m3

p

q

N1={m1,m2,m3} N2={m1, p} N3={m1,m2, q}

Serial=c(m1)·Um1 + c(m2)·Um2 + c(m3)·Um3 + c(p)·Up + c(q)·Uq

Elvira Albert, UCM Resource Analysis 27/37



Parallel Cost Analysis

Program Distributed Flow Graph

m1

m2

m3

p

q

m1

m2

m3

N1={m1,m2,m3}N1={m1,m2,m3} N2={m1, p} N3={m1,m2, q}

Serial=c(m1)·Um1 + c(m2)·Um2 + c(m3)·Um3 + c(p)·Up + c(q)·Uq

Elvira Albert, UCM Resource Analysis 27/37



Parallel Cost Analysis

Program Distributed Flow Graph

m1

m2

m3

p

q

m1

m2

m3

N1={m1,m2,m3}N1={m1,m2,m3} N2={m1, p} N3={m1,m2, q}

Serial=c(m1)·Um1 + c(m2)·Um2 + c(m3)·Um3 + c(p)·Up + c(q)·Uq

UB|N1=Um1+Um2+Um3

Serial=c(m1)·Um1 + c(m2)·Um2 + c(m3)·Um3 +���
�c(p)·Up +���

�c(q)·Uq

Elvira Albert, UCM Resource Analysis 27/37



Parallel Cost Analysis

Program Distributed Flow Graph

m1

m2

m3

p

q

m1 p

N1={m1,m2,m3} N2={m1, p}N2={m1, p} N3={m1,m2, q}

Serial=c(m1)·Um1 + c(m2)·Um2 + c(m3)·Um3 + c(p)·Up + c(q)·Uq

UB|N1=Um1+Um2+Um3

Elvira Albert, UCM Resource Analysis 27/37



Parallel Cost Analysis

Program Distributed Flow Graph

m1

m2

m3

p

q

m1 p

N1={m1,m2,m3} N2={m1, p}N2={m1, p} N3={m1,m2, q}

Serial=c(m1)·Um1 + c(m2)·Um2 + c(m3)·Um3 + c(p)·Up + c(q)·Uq

UB|N1=Um1+Um2+Um3
UBN2=Um1 + Up

Serial=c(m1)·Um1 +���
��c(m2)·Um2 +���

��c(m3)·Um3 + c(p)·Up +���
�c(q)·Uq

Elvira Albert, UCM Resource Analysis 27/37



Parallel Cost Analysis

Program Distributed Flow Graph

m1

m2

m3

p

q

m1

m2 q

N1={m1,m2,m3} N2={m1, p} N3={m1,m2, q}N3={m1,m2, q}

Serial=c(m1)·Um1 + c(m2)·Um2 + c(m3)·Um3 + c(p)·Up + c(q)·Uq

UB|N1=Um1+Um2+Um3
UBN2=Um1 + Up

Elvira Albert, UCM Resource Analysis 27/37



Parallel Cost Analysis

Program Distributed Flow Graph

m1

m2

m3

p

q

m1

m2 q

N1={m1,m2,m3} N2={m1, p} N3={m1,m2, q}N3={m1,m2, q}

Serial=c(m1)·Um1 + c(m2)·Um2 + c(m3)·Um3 + c(p)·Up + c(q)·Uq

UB|N1=Um1+Um2+Um3
UBN2=Um1 + Up UBN3 = Um1 + Um2 + Uq

Serial=c(m1)·Um1 + c(m2)·Um2 +���
��c(m3)·Um3 +���

�c(p)·Up + c(q)·Uq

Elvira Albert, UCM Resource Analysis 27/37



Parallel Cost Analysis

Program Distributed Flow Graph

m1

m2

m3

p

q

N1={m1,m2,m3} N2={m1, p} N3={m1,m2, q}

Serial=c(m1)·Um1 + c(m2)·Um2 + c(m3)·Um3 + c(p)·Up + c(q)·Uq

UB|N1=Um1+Um2+Um3
UBN2=Um1 + Up UBN3 = Um1 + Um2 + Uq

The parallel cost of the program is
the maximum of all possible UB’s:
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Demo SACO
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Part 2: Distributed Systems

Peak Cost
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Motivation

Non-cumulative resources: are acquired and then released

New notion of cost: infer the peak cost vs. the total cost

Technical difficulty: not enough to reason on the final state
of the execution, the upper bound on the cost can happen at
any intermediate step

Key feature: framework can be instantiated to measure any
type of non-cumulative resource that is acquired and
(optionally) freed.
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Handling resources

Two instructions for handling resources:

y = acquire(e) allocates the amount of resources stated by
expression e.
release y releases resources referenced by y.

resource leaks when

Reusing a resource variable without releasing previous
resources.
Reaching the end of a method without releasing a resource
variable.
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Peak Cost: Motivating Example

1 main ( i n t s , i n t n ) {
2 x = acquire(k1 ) ;
3 r = acquire(k2 ) ;
4 r = acquire( s ) ;
5 release r ;
6 y = acquire( n ) ;
7 release x ;
8 }
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The peak cost is the maximum between them:
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Simultaneous resource analysis

1 main ( i n t s , i n t n ) {
2 x = acquire(k1 ) ;
3 r = acquire(k2 ) ;
4 r = acquire( s ) ;

5 release r ;
6 y = acquire( n ) ;
7 release x ;
8 }
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The UB on the peak cost of the program is
the maximum of all UB’s:

UBN = max(UBA1 ,UBA2) < Total
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Demo SACO
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Summary Distributed Systems

Cost centers based resource analysis APLAS’11

New performance indicators iFM’13

Parallel cost analysis SAS’15

Peak cost analysis TACAS’15
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Conclusions

Cost Analysis

research on cost analysis dates back to 1975
generating and solving different forms of recurrence relations

From sequential to concurrent systems

Concurrent interleavings
May-happen-in-parallel based analysis
Rely-guarantee

From concurrent to distributed systems

New performance indicators
New notions of cost

Parallel cost
Peak cost

Integrated in the SACO system, Static Analyzer for
Concurrent Objects
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