
Resource Analysis of
Distributed and

Concurrent Programs

Elvira Albert
Complutense University of Madrid (Spain)

DICE-FOPARA 2017

April 22-23, 2017, Uppsala, Sweden

Elvira Albert, UCM Resource Analysis 1/37

what is resource analysis?

The aim of resource analysis is to bound the
resource consumption (aka cost) of executing a
given program P without actually executing
P

Elvira Albert, UCM Resource Analysis 2/37

what is resource analysis?

The aim of resource analysis is to bound the
resource consumption (aka cost) of executing a
given program P without actually executing
P

stat
ic

Elvira Albert, UCM Resource Analysis 2/37

what is resource analysis?

The aim of resource analysis is to bound the
resource consumption (aka cost) of executing a
given program P without actually executing
P

stat
ic

any

Elvira Albert, UCM Resource Analysis 2/37

what is resource analysis?

The aim of resource analysis is to bound the
resource consumption (aka cost) of executing a
given program P without actually executing
P

stat
ic

any

aut
oma
tic

Elvira Albert, UCM Resource Analysis 2/37

what is resource analysis?

The aim of resource analysis is to bound the
resource consumption (aka cost) of executing a
given program P without actually executing
P

stat
ic

any

aut
oma
tic

Elvira Albert, UCM Resource Analysis 2/37

what is resource analysis?

The aim of resource analysis is to bound the
resource consumption (aka cost) of executing a
given program P without actually executing
P

stat
ic

any

aut
oma
tic

Upper Bounds (worst case)

Lower Bounds (best case)

Elvira Albert, UCM Resource Analysis 2/37

what is resource analysis?

The aim of resource analysis is to bound the
resource consumption (aka cost) of executing a
given program P without actually executing
P

stat
ic

any

aut
oma
tic

Elvira Albert, UCM Resource Analysis 2/37

what is resource analysis?

The aim of resource analysis is to bound the
resource consumption (aka cost) of executing a
given program P without actually executing
P

stat
ic

any

aut
oma
tic

Execution steps

Visits to p

Memory

Time? Energy?

Elvira Albert, UCM Resource Analysis 2/37

what is resource analysis?

The aim of resource analysis is to bound the
resource consumption (aka cost) of executing a
given program P without actually executing
P

stat
ic

any

aut
oma
tic

Execution steps

Visits to p

Memory

Time? Energy?

non-cumulative

Elvira Albert, UCM Resource Analysis 2/37

what is resource analysis?

The aim of resource analysis is to bound the
resource consumption (aka cost) of executing a
given program P without actually executing
P

stat
ic

any

aut
oma
tic

Execution steps

Visits to p

Memory

Time? Energy?

Elvira Albert, UCM Resource Analysis 2/37

what is resource analysis?

The aim of resource analysis is to bound the
resource consumption (aka cost) of executing a
given program P without actually executing
P

stat
ic

any

aut
oma
tic

Execution steps

Visits to p

Memory

Time? Energy?
platform dependent

Elvira Albert, UCM Resource Analysis 2/37

what is it useful for?

• Traditional applications

Elvira Albert, UCM Resource Analysis 3/37

what is it useful for?

• Traditional applications

• Program optimization

U1 U2�

Elvira Albert, UCM Resource Analysis 3/37

what is it useful for?

• Traditional applications

• Program optimization

• Verification: resource guarantees

Elvira Albert, UCM Resource Analysis 3/37

what is it useful for?

• Traditional applications

• Program optimization

• Verification: resource guarantees

• Certification: resource usage certificates

U = 2n2 + 3n

Proof:

Elvira Albert, UCM Resource Analysis 3/37

what is it useful for?

• Traditional applications

• Program optimization

• Verification: resource guarantees

• Certification: resource usage certificates

• New applications for distributed systems

Elvira Albert, UCM Resource Analysis 3/37

what is it useful for?

• Traditional applications

• Program optimization

• Verification: resource guarantees

• Certification: resource usage certificates

• New applications for distributed systems

• Load balance

2n + 2m

2n2 + 4m

5n + 3m

n log(n) + 4m

Elvira Albert, UCM Resource Analysis 3/37

what is it useful for?

• Traditional applications

• Program optimization

• Verification: resource guarantees

• Certification: resource usage certificates

• New applications for distributed systems

• Load balance

• Amount of data transmitted

2n + 2m

2n2 + 4m

5n + 3m

n log(n) + 4m

3n+mn+m
2

4m n2 ∗ m4

n
∗
m

lo
g
(n
)

Elvira Albert, UCM Resource Analysis 3/37

what is it useful for?

• Traditional applications

• Program optimization

• Verification: resource guarantees

• Certification: resource usage certificates

• New applications for distributed systems

• Load balance

• Amount of data transmitted

• Explotation of parallelism

2n + 2m

2n2 + 4m

5n + 3m

n log(n) + 4m

3n+mn+m
2

4m n2 ∗ m4

n
∗
m

lo
g
(n
)

Elvira Albert, UCM Resource Analysis 3/37

what is it useful for?

• Traditional applications

• Program optimization

• Verification: resource guarantees

• Certification: resource usage certificates

• New applications for distributed systems

• Load balance

• Amount of data transmitted

• Explotation of parallelism

• Model and dimension distributed systems

2n + 2m

2n2 + 4m

5n + 3m

n log(n) + 4m

3n+mn+m
2

4m n2 ∗ m4

n
∗
m

lo
g
(n
)

Elvira Albert, UCM Resource Analysis 3/37

Plan of the talk

Part 1: Cost analysis in sequential programs

Generation of cost relations
Inference of upper bounds

Part 2: Cost analysis in concurrent programs

Loops with concurrent interleavings
May-happen-in-parallel analysis
Rely-guarantee reasoning

Part 3: Cost analysis of distributed systems

Dynamic distributed locations
Resource analysis with cost centers
New performance indicators
Parallel and peak cost

Elvira Albert, UCM Resource Analysis 4/37

Plan of the talk

Part 1: Cost analysis in sequential programs

Generation of cost relations
Inference of upper bounds

Part 2: Cost analysis in concurrent programs

Loops with concurrent interleavings
May-happen-in-parallel analysis
Rely-guarantee reasoning

Part 3: Cost analysis of distributed systems

Dynamic distributed locations
Resource analysis with cost centers
New performance indicators
Parallel and peak cost

Elvira Albert, UCM Resource Analysis 4/37

Plan of the talk

Part 1: Cost analysis in sequential programs

Generation of cost relations
Inference of upper bounds

Part 2: Cost analysis in concurrent programs

Loops with concurrent interleavings
May-happen-in-parallel analysis
Rely-guarantee reasoning

Part 3: Cost analysis of distributed systems

Dynamic distributed locations
Resource analysis with cost centers
New performance indicators
Parallel and peak cost

Elvira Albert, UCM Resource Analysis 4/37

Part 1: Resource Analysis of Sequential Code

Sequential Programs

Elvira Albert, UCM Resource Analysis 5/37

Resource Analysis of Sequential Code

Program
(Cost Model)

Upper Bound

while (l != null) {
l = l.next;
new C();
}
(number of instructions)

1 + 2∗size(l)

Elvira Albert, UCM Resource Analysis 6/37

Resource Analysis of Sequential Code

Program
(Cost Model)

Upper Bound

while (l != null) {
l = l.next;
new C();
}
(number of instructions)

1 + 2∗size(l)

while (l != null) {
l = l.next;
new C();
}
(number of instructions)

1 + 3∗size(l)

Elvira Albert, UCM Resource Analysis 6/37

Resource Analysis of Sequential Code

Program
(Cost Model)

Upper Bound

while (l != null) {
l = l.next;
new C();
}
(number of instructions)

1 + 2∗size(l)

while (l != null) {
l = l.next;
new C();
}
(number of instructions)

1 + 3∗size(l)

Elvira Albert, UCM Resource Analysis 6/37

Resource Analysis of Sequential Code

Program
(Cost Model)

Upper Bound

while (l != null) {
l = l.next;
new C();
}
(number of instructions)

1 + 2∗size(l)

while (l != null) {
l = l.next;
new C(); ⇐ programpoint
}
(number of visits to a program point)

1 + 2∗size(l)

Elvira Albert, UCM Resource Analysis 6/37

Resource Analysis of Sequential Code

Program
(Cost Model)

Upper Bound

while (l != null) {
l = l.next;
new C();
}
(number of instructions)

1 + 2∗size(l)

while (l != null) {
l = l.next;
new C(); ⇐ program point
}
(number of visits to a program point)

size(l)

Elvira Albert, UCM Resource Analysis 6/37

Resource Analysis of Sequential Code

Program
(Cost Model)

Upper Bound

while (l != null) {
l = l.next;
new C();
}
(number of instructions)

1 + 2∗size(l)

while (l != null) {
l = l.next;
new C(); ⇐ program point
}

(memory)

size(l)

Elvira Albert, UCM Resource Analysis 6/37

Resource Analysis of Sequential Code

Program
(Cost Model)

Upper Bound

while (l != null) {
l = l.next;
new C();
}
(number of instructions)

1 + 2∗size(l)

while (l != null) {
l = l.next;
new C(); ⇐ memory
}

(memory)

size(l)∗size(C)

Elvira Albert, UCM Resource Analysis 6/37

Resource Analysis of Sequential Code

Program
(Cost Model)

Upper Bound

A Classical approach [Wegbreit’75] to
cost analysis consists of:

1. expressing the cost of a program
by means of recurrence
relations.

2. solving the relations by
obtaining a closed-form upper
bound (a function of the input
data sizes).

Elvira Albert, UCM Resource Analysis 7/37

Resource Analysis of Sequential Code

Program
(Cost Model)

Cost Relations

CRs Solver

Upper Bound

A Classical approach [Wegbreit’75] to
cost analysis consists of:

1. expressing the cost of a program
by means of recurrence
relations.

2. solving the relations by
obtaining a closed-form upper
bound (a function of the input
data sizes).

Elvira Albert, UCM Resource Analysis 8/37

Resource Analysis of Sequential Code

Program
(Cost Model)

Static Analysis

Cost Relations

CRs Solver

Upper Bound

Elvira Albert, UCM Resource Analysis 9/37

Resource Analysis of Sequential Code

Program
(Cost Model)

Static Analysis

Cost Relations

CRs Solver

Upper Bound

while(l) = k1 {l=0}
while(l) = k2+while(l ′′) {l>0, l>l ′′}

Static Analysis

while (l != null) l = l.next;

Elvira Albert, UCM Resource Analysis 9/37

Resource Analysis of Sequential Code

Program
(Cost Model)

Static Analysis

Cost Relations

Elvira Albert, UCM Resource Analysis 10/37

Resource Analysis of Sequential Code

Program
(Cost Model)

Recursive

Representation

Size Analysis

Cost Relations

Elvira Albert, UCM Resource Analysis 10/37

Resource Analysis of Sequential Code

Program
(Cost Model)

Recursive

Representation

Size Analysis

Cost Relations

while (l != null) l = l.next;

while(l , l) ← l=null .
while(l , l ′)← l 6=null ,

l ′′=l .next,
while(l ′′, l ′).

Elvira Albert, UCM Resource Analysis 10/37

Resource Analysis of Sequential Code

Program
(Cost Model)

Recursive

Representation

Size Analysis

Cost Relations

while (l != null) l = l.next;

while(l , l) ← l=null .
while(l , l ′)← l 6=null ,

l ′′=l .next,
while(l ′′, l ′).

while(l , l) ← l=null .
while(l , l ′)← l 6=null ,

l ′′=l .next,
while(l ′′, l ′).

Elvira Albert, UCM Resource Analysis 10/37

Resource Analysis of Sequential Code

Program
(Cost Model)

Recursive

Representation

Size Analysis

Cost Relations

while (l != null) l = l.next;

while(l , l) ← l=null .
while(l , l ′)← l 6=null ,

l ′′=l .next,
while(l ′′, l ′).

while(l , l) ← l=null .
while(l , l ′)← l 6=null ,

l ′′=l .next,
while(l ′′, l ′).

Elvira Albert, UCM Resource Analysis 10/37

Resource Analysis of Sequential Code

Program
(Cost Model)

Recursive

Representation

Size Analysis

Cost Relations

while (l != null) l = l.next;

while(l , l) ← l=null .
while(l , l ′)← l 6=null ,

l ′′=l .next,
while(l ′′, l ′).

while(l , l) ← l=null .
while(l , l ′)← l 6=null ,

l ′′=l .next,
while(l ′′, l ′).

Elvira Albert, UCM Resource Analysis 10/37

Resource Analysis of Sequential Code

Program
(Cost Model)

Recursive

Representation

Size Analysis

Cost Relations

while (l != null) l = l.next;

while(l , l) ← l=null .
while(l , l ′)← l 6=null ,

l ′′=l .next,
while(l ′′, l ′).

size1 ← {l=0}
size2 ← {l>0, l>l ′′}

Elvira Albert, UCM Resource Analysis 10/37

Resource Analysis of Sequential Code

Program
(Cost Model)

Recursive

Representation

Size Analysis

Cost Relations

while (l != null) l = l.next;

while(l , l) ← l=null .
while(l , l ′)← l 6=null ,

l ′′=l .next,
while(l ′′, l ′).

while(l , l) ← l=null .
while(l , l ′)← l 6=null ,

l ′′=l .next,
while(l ′′, l ′).

size1 ← {l=0}
size2 ← {l>0, l>l ′′}

Elvira Albert, UCM Resource Analysis 10/37

Resource Analysis of Sequential Code

Program
(Cost Model)

Recursive

Representation

Size Analysis

Cost Relations

while (l != null) l = l.next;

while(l , l) ← l=null .
while(l , l ′)← l 6=null ,

l ′′=l .next,
while(l ′′, l ′).

while(l , l) ← l=null .
while(l , l ′)← l 6=null ,

l ′′=l .next,
while(l ′′, l ′).

size1 ← {l=0}
size2 ← {l>0, l>l ′′}

Elvira Albert, UCM Resource Analysis 10/37

Resource Analysis of Sequential Code

Program
(Cost Model)

Recursive

Representation

Size Analysis

Cost Relations

while (l != null) l = l.next;

while(l , l) ← l=null .
while(l , l ′)← l 6=null ,

l ′′=l .next,
while(l ′′, l ′).

while(l , l) ← l=null .
while(l , l ′)← l 6=null ,

l ′′=l .next,
while(l ′′, l ′).

size1 ← {l=0}
size2 ← {l>0, l>l ′′}

Elvira Albert, UCM Resource Analysis 10/37

Resource Analysis of Sequential Code

Program
(Cost Model)

Recursive

Representation

Size Analysis

Cost Relations

while (l != null) l = l.next;

while(l , l) ← l=null .
while(l , l ′)← l 6=null ,

l ′′=l .next,
while(l ′′, l ′).

while(l , l) ← l=null .
while(l , l ′)← l 6=null ,

l ′′=l .next,
while(l ′′, l ′).

size1 ← {l=0}
size2 ← {l>0, l>l ′′}

Elvira Albert, UCM Resource Analysis 10/37

Resource Analysis of Sequential Code

Program
(Cost Model)

Recursive

Representation

Size Analysis

Cost Relations

while (l != null) l = l.next;

while(l , l) ← l=null .
while(l , l ′)← l 6=null ,

l ′′=l .next,
while(l ′′, l ′).

while(l , l) ← l=null .
while(l , l ′)← l 6=null ,

l ′′=l .next,
while(l ′′, l ′).

size1 ← {l=0}
size2 ← {l>0, l>l ′′}

while(l) = k1 {l=0}
while(l) = k2+while(l ′′) {l>0, l>l ′′}

Elvira Albert, UCM Resource Analysis 10/37

Resource Analysis of Sequential Code

Program
(Cost Model)

Recursive

Representation

Size Analysis

Cost Relations

while (l != null) l = l.next;

while(l , l) ← l=null .
while(l , l ′)← l 6=null ,

l ′′=l .next,
while(l ′′, l ′).

while(l , l) ← l=null .
while(l , l ′)← l 6=null ,

l ′′=l .next,
while(l ′′, l ′).

size1 ← {l=0}
size2 ← {l>0, l>l ′′}

while(l) = k1 {l=0}
while(l) = k2+while(l ′′) {l>0, l>l ′′}

Elvira Albert, UCM Resource Analysis 10/37

Resource Analysis of Sequential Code

Program
(Cost Model)

Recursive

Representation

Size Analysis

Cost Relations

while (l != null) l = l.next;

while(l , l) ← l=null .
while(l , l ′)← l 6=null ,

l ′′=l .next,
while(l ′′, l ′).

while(l , l) ← l=null .
while(l , l ′)← l 6=null ,

l ′′=l .next,
while(l ′′, l ′).

size1 ← {l=0}
size2 ← {l>0, l>l ′′}

while(l) = k1 {l=0}
while(l) = k2+while(l ′′) {l>0, l>l ′′}

Elvira Albert, UCM Resource Analysis 10/37

Resource Analysis of Sequential Code

Program
(Cost Model)

Recursive

Representation

Size Analysis

Cost Relations

while (l != null) l = l.next;

while(l , l) ← l=null .
while(l , l ′)← l 6=null ,

l ′′=l .next,
while(l ′′, l ′).

while(l , l) ← l=null .
while(l , l ′)← l 6=null ,

l ′′=l .next,
while(l ′′, l ′).

size1 ← {l=0}
size2 ← {l>0, l>l ′′}

while(l) = 1 {l=0}
while(l) = k2+while(l ′′) {l>0, l>l ′′}

Elvira Albert, UCM Resource Analysis 10/37

Resource Analysis of Sequential Code

Program
(Cost Model)

Recursive

Representation

Size Analysis

Cost Relations

while (l != null) l = l.next;

while(l , l) ← l=null .
while(l , l ′)← l 6=null ,

l ′′=l .next,
while(l ′′, l ′).

while(l , l) ← l=null .
while(l , l ′)← l 6=null ,

l ′′=l .next,
while(l ′′, l ′).

size1 ← {l=0}
size2 ← {l>0, l>l ′′}

while(l) = 1 {l=0}
while(l) = 2+while(l ′′) {l>0, l>l ′′}

Elvira Albert, UCM Resource Analysis 10/37

Resource Analysis of Sequential Code

Program
(Cost Model)

Cost Relations

CRs Solver

Upper Bound

Elvira Albert, UCM Resource Analysis 11/37

Resource Analysis of Sequential Code

Program
(Cost Model)

Cost Relations

CRs Solver

Upper Bound

X

Elvira Albert, UCM Resource Analysis 11/37

Resource Analysis of Sequential Code

Program
(Cost Model)

Cost Relations

CRs Solver

Upper Bound

X

while (l != null) l = l.next;

while(l) = k1 {l=0}
while(l) = k2+while(l ′′) {l>0, l>l ′′} X

Elvira Albert, UCM Resource Analysis 11/37

Resource Analysis of Sequential Code

Program
(Cost Model)

Cost Relations

CRs Solver

Upper Bound

X

while (l != null) l = l.next;

while(l) = k1 {l=0}
while(l) = k2+while(l ′′) {l>0, l>l ′′} X

k1 + k2 ∗ l

Elvira Albert, UCM Resource Analysis 11/37

Resource Analysis of Sequential Code

Cost Relations

CRs Solver

Upper Bound

Elvira Albert, UCM Resource Analysis 12/37

Resource Analysis of Sequential Code

Cost Relations

Ranking function

Maximization

Upper Bound

while(l) = k1 {l=0}
while(l) = k2+while(l ′′) {l>0, l>l ′′}

Elvira Albert, UCM Resource Analysis 12/37

Resource Analysis of Sequential Code

Cost Relations

Ranking function

Maximization

Upper Bound

while(l) = k1 {l=0}
while(l) = k2+while(l ′′) {l>0, l>l ′′}
while(l) = k1 {l=0}
while(l) = k2+while(l ′′) {l>0, l>l ′′}

RF (l) = l
(linear expression on l)

Elvira Albert, UCM Resource Analysis 12/37

Resource Analysis of Sequential Code

Cost Relations

Ranking function

Maximization

Upper Bound

while(l) = k1 {l=0}
while(l) = k2+while(l ′′) {l>0, l>l ′′}
while(l) = k1 {l=0}
while(l) = k2+while(l ′′) {l>0, l>l ′′}

RF (l) = l
(linear expression on l)

while(l) = k1 {l=0}
while(l) = k2+while(l ′′) {l>0, l>l ′′}

Maximization remains the same
k1 and k2 are constants

Elvira Albert, UCM Resource Analysis 12/37

Resource Analysis of Sequential Code

Cost Relations

Ranking function

Maximization

Upper Bound

while(l) = k1 {l=0}
while(l) = k2+while(l ′′) {l>0, l>l ′′}
while(l) = k1 {l=0}
while(l) = k2+while(l ′′) {l>0, l>l ′′}

RF (l) = l
(linear expression on l)

while(l) = k1 {l=0}
while(l) = k2+while(l ′′) {l>0, l>l ′′}

Maximization remains the same
k1 and k2 are constants

while(l) = k1 {l=0}
while(l) = k2+while(l ′′) {l>0, l>l ′′}

while+(l) = cost+bc + RF (l) ∗ cost+loop
while+(l) = k1 + l ∗ k2

Maximization remains the same
k1 and k2 are constants

Elvira Albert, UCM Resource Analysis 12/37

Resource Analysis of Sequential Code

Cost Relations

Ranking function

Maximization

Upper Bound

while(l) = k1 {l=0}
while(l) = k2+while(l ′′) {l>0, l>l ′′}
while(l) = k1 {l=0}
while(l) = k2+while(l ′′) {l>0, l>l ′′}

RF (l) = l
(linear expression on l)

while(l) = k1 {l=0}
while(l) = k2+while(l ′′) {l>0, l>l ′′}

Maximization remains the same
k1 and k2 are constants

while(l) = k1 {l=0}
while(l) = k2+while(l ′′) {l>0, l>l ′′}

while+(l) = cost+bc + RF (l) ∗ cost+loop
while+(l) = k1 + l ∗ k2

Maximization remains the same
k1 and k2 are constants

while(l) = k1 {l=0}
while(l) = k2+while(l ′′) {l>0, l>l ′′}

Maximization remains the same
k1 and k2 are constants

while+(l) = cost+bc + RF (l) ∗ cost+loop
while+(l) = k1 + l ∗ k2

Elvira Albert, UCM Resource Analysis 12/37

Resource Analysis of Sequential Code

Cost Relations

Ranking function

Maximization

Upper Bound

while(l) = k1 {l=0}
while(l) = k2+while(l ′′) {l>0, l>l ′′}
while(l) = k1 {l=0}
while(l) = k2+while(l ′′) {l>0, l>l ′′}

RF (l) = l
(linear expression on l)

while(l) = k1 {l=0}
while(l) = k2+while(l ′′) {l>0, l>l ′′}

Maximization remains the same
k1 and k2 are constants

while(l) = k1 {l=0}
while(l) = k2+while(l ′′) {l>0, l>l ′′}

while+(l) = cost+bc + RF (l) ∗ cost+loop
while+(l) = k1 + l ∗ k2

Maximization remains the same
k1 and k2 are constants

while(l) = k1 {l=0}
while(l) = k2+while(l ′′) {l>0, l>l ′′}

Maximization remains the same
k1 and k2 are constants

while+(l) = cost+bc + RF (l) ∗ cost+loop
while+(l) = k1 + l ∗ k2

while(l) = k1 {l=0}
while(l) = k2+while(l ′′) {l>0, l>l ′′}

RF (l) = l
(linear expression on l)

Maximization remains the same
k1 and k2 are constants

while+(l) = cost+bc + RF (l) ∗ cost+loop
while+(l) = k1 + l∗k2

Elvira Albert, UCM Resource Analysis 12/37

Resource Analysis of Sequential Code

Cost Relations

Ranking function

Maximization

Upper Bound

while(l) = k1 {l=0}
while(l) = k2+while(l ′′) {l>0, l>l ′′}
while(l) = k1 {l=0}
while(l) = k2+while(l ′′) {l>0, l>l ′′}

RF (l) = l
(linear expression on l)

while(l) = k1 {l=0}
while(l) = k2+while(l ′′) {l>0, l>l ′′}

Maximization remains the same
k1 and k2 are constants

while(l) = k1 {l=0}
while(l) = k2+while(l ′′) {l>0, l>l ′′}

while+(l) = cost+bc + RF (l) ∗ cost+loop
while+(l) = k1 + l ∗ k2

Maximization remains the same
k1 and k2 are constants

while(l) = k1 {l=0}
while(l) = k2+while(l ′′) {l>0, l>l ′′}

Maximization remains the same
k1 and k2 are constants

while+(l) = cost+bc + RF (l) ∗ cost+loop
while+(l) = k1 + l ∗ k2

while(l) = k1 {l=0}
while(l) = k2+while(l ′′) {l>0, l>l ′′}

RF (l) = l
(linear expression on l)

Maximization remains the same
k1 and k2 are constants

while+(l) = cost+bc + RF (l) ∗ cost+loop
while+(l) = k1 + l∗k2

while(l) = k1 {l=0}
while(l) = k2+while(l ′′) {l>0, l>l ′′}

RF (l) = l
(linear expression on l)

Maximization remains the same
k1 and k2 are constants

while+(l) = cost+bc + RF (l) ∗ cost+loop
while+(l) = k1 + l∗k2

Elvira Albert, UCM Resource Analysis 12/37

Summary Sequential

The process involves a series of transformations and analyses:

Transformation into recursive form
Size analysis
Generation of cost relations
Ranking functions and maximization

We cover polynomial, exponential, logarithmic complexities

From now on: given task m, we assume cost Um
Main references: ESOP’07, SAS’08

Handling fields: SAS’10, FM’11

Elvira Albert, UCM Resource Analysis 13/37

Part 2: Concurrent Programs

Concurrent Programs

Elvira Albert, UCM Resource Analysis 14/37

Adding Concurrency

p
Different tasks interleave
execution in the same processor

Asynchronous task invocations
m(x̄)

Non-preemptive concurrency by
explicitly releasing the processor
release

Shared memory among the
different tasks

Elvira Albert, UCM Resource Analysis 15/37

Adding Concurrency

p m

Different tasks interleave
execution in the same processor

Asynchronous task invocations
m(x̄)

Non-preemptive concurrency by
explicitly releasing the processor
release

Shared memory among the
different tasks

Elvira Albert, UCM Resource Analysis 15/37

Adding Concurrency

p m

release

release

Different tasks interleave
execution in the same processor

Asynchronous task invocations
m(x̄)

Non-preemptive concurrency by
explicitly releasing the processor
release

Shared memory among the
different tasks

Elvira Albert, UCM Resource Analysis 15/37

Adding Concurrency

p m

release

release

f x y

Different tasks interleave
execution in the same processor

Asynchronous task invocations
m(x̄)

Non-preemptive concurrency by
explicitly releasing the processor
release

Shared memory among the
different tasks

Elvira Albert, UCM Resource Analysis 15/37

Resource Analysis with interleavings (I)

p

release

f=3
f=2
f=1

release

f=*

f x y whi le (f >0){
. . .
f = f −1;
r e l e a s e ;

}

1st approach: assume that
shared memory changes after
every release

Loss of information, poor results
→ loops based on shared
variables cannot be bound.

Elvira Albert, UCM Resource Analysis 16/37

Resource Analysis with interleavings (I)

p

release

f=3
f=2
f=1

release

f=*

f x y

f=?

whi le (f >0){
. . .
f = f −1;
r e l e a s e ;

}

1st approach: assume that
shared memory changes after
every release

Loss of information, poor results
→ loops based on shared
variables cannot be bound.

Elvira Albert, UCM Resource Analysis 16/37

Resource Analysis with interleavings (II)

p m

f=3
f=2
f=1

release

release

x=3
y=7

f x y 1 whi le (f >0){
2 . . .
3 f = f −1;
4 r e l e a s e ;
5 }

6 x = 3
7 y = 7 ;

p()

m()

2nd approach: use a
May-Happen-in-Parallel analysis
to infer instructions pairs that can
interleave: . . . (4, 6), (4, 7) . . .

Shared memory can only change
if an update can interleave with
release → improve results

Elvira Albert, UCM Resource Analysis 17/37

Resource Analysis with interleavings (II)

p m

f=3
f=2
f=1

release

release

x=3
y=7

f=1

f x y 1 whi le (f >0){
2 . . .
3 f = f −1;
4 r e l e a s e ;
5 }

6 x = 3
7 y = 7 ;

p()

m()

2nd approach: use a
May-Happen-in-Parallel analysis
to infer instructions pairs that can
interleave: . . . (4, 6), (4, 7) . . .

Shared memory can only change
if an update can interleave with
release → improve results

Elvira Albert, UCM Resource Analysis 17/37

Resource Analysis with interleavings (III)

p

f=3
f=2
f=1

release

m

f x y
1 whi le (f >0){
2 . . .
3 f = f −1;
4 r e l e a s e ;
5 }

6 whi le (x>0){
7 x = x−1;
8 f = 1 0 0 ;
9 r e l e a s e ;
10 }

p() m()

3rd approach: interleavings that
modify shared memory are safe if
they can only happen a finite
number of times

Rely-guarantee reasoning:
max(f)× (max(x) + 1)

Elvira Albert, UCM Resource Analysis 18/37

Resource Analysis with interleavings (III)

p

f=3
f=2
f=1

release

m

x=1
f=100
release

f x y
1 whi le (f >0){
2 . . .
3 f = f −1;
4 r e l e a s e ;
5 }

6 whi le (x>0){
7 x = x−1;
8 f = 1 0 0 ;
9 r e l e a s e ;
10 }

p() m()

3rd approach: interleavings that
modify shared memory are safe if
they can only happen a finite
number of times

Rely-guarantee reasoning:
max(f)× (max(x) + 1)

Elvira Albert, UCM Resource Analysis 18/37

Resource Analysis with interleavings (III)

p

f=3
f=2
f=1

release

m

x=1
f=100
release

f=100
f=99...
f=1

release

f x y
1 whi le (f >0){
2 . . .
3 f = f −1;
4 r e l e a s e ;
5 }

6 whi le (x>0){
7 x = x−1;
8 f = 1 0 0 ;
9 r e l e a s e ;
10 }

p() m()

3rd approach: interleavings that
modify shared memory are safe if
they can only happen a finite
number of times

Rely-guarantee reasoning:
max(f)× (max(x) + 1)

Elvira Albert, UCM Resource Analysis 18/37

Resource Analysis with interleavings (III)

p

f=3
f=2
f=1

release

m

x=1
f=100
release

f=100
f=99...
f=1

release
x=0
f=100
release

f x y
1 whi le (f >0){
2 . . .
3 f = f −1;
4 r e l e a s e ;
5 }

6 whi le (x>0){
7 x = x−1;
8 f = 1 0 0 ;
9 r e l e a s e ;
10 }

p() m()

3rd approach: interleavings that
modify shared memory are safe if
they can only happen a finite
number of times

Rely-guarantee reasoning:
max(f)× (max(x) + 1)

Elvira Albert, UCM Resource Analysis 18/37

Resource Analysis with interleavings (III)

p

f=3
f=2
f=1

release

m

x=1
f=100
release

f=100
f=99...
f=1

release
x=0
f=100
release

f=100
f=99...
f=1

release

f x y
1 whi le (f >0){
2 . . .
3 f = f −1;
4 r e l e a s e ;
5 }

6 whi le (x>0){
7 x = x−1;
8 f = 1 0 0 ;
9 r e l e a s e ;
10 }

p() m()

3rd approach: interleavings that
modify shared memory are safe if
they can only happen a finite
number of times

Rely-guarantee reasoning:
max(f)× (max(x) + 1)

Elvira Albert, UCM Resource Analysis 18/37

Resource Analysis with interleavings (III)

p

f=3
f=2
f=1

release

m

x=1
f=100
release

f=100
f=99...
f=1

release
x=0
f=100
release

f=100
f=99...
f=1

release

f x y
1 whi le (f >0){
2 . . .
3 f = f −1;
4 r e l e a s e ;
5 }

6 whi le (x>0){
7 x = x−1;
8 f = 1 0 0 ;
9 r e l e a s e ;
10 }

p() m()

3rd approach: interleavings that
modify shared memory are safe if
they can only happen a finite
number of times

Rely-guarantee reasoning:
max(f)× (max(x) + 1)

Elvira Albert, UCM Resource Analysis 18/37

Summary Concurrent Programs

Basic resource analysis for sound results APLAS’11

May-happen-in-parallel analysis FORTE’12, LPAR’13,
SAS’15

Rely-guarantee reasoning ATVA’13, JAR’17

From now on: given a concurrent task m, we assume cost Um

Elvira Albert, UCM Resource Analysis 19/37

Part 3: Distributed Systems

Distributed Systems

Elvira Albert, UCM Resource Analysis 20/37

Adding distribution

x

X = newLoc to create a
distributed location

A location has a queue of pending
tasks and one active task

Multiple locations can be created
dynamically y=newLoc; z=newLoc

Asynchronous tasks can be added
among locations: x.m(w) (in z)

Elvira Albert, UCM Resource Analysis 21/37

Adding distribution

xx

p q X = newLoc to create a
distributed location

A location has a queue of pending
tasks and one active task

Multiple locations can be created
dynamically y=newLoc; z=newLoc

Asynchronous tasks can be added
among locations: x.m(w) (in z)

Elvira Albert, UCM Resource Analysis 21/37

Adding distribution

xx

p q

y

r p

z

t u

X = newLoc to create a
distributed location

A location has a queue of pending
tasks and one active task

Multiple locations can be created
dynamically y=newLoc; z=newLoc

Asynchronous tasks can be added
among locations: x.m(w) (in z)

Elvira Albert, UCM Resource Analysis 21/37

Adding distribution

xx

p q

y

r p

z

t u

x

p q m X = newLoc to create a
distributed location

A location has a queue of pending
tasks and one active task

Multiple locations can be created
dynamically y=newLoc; z=newLoc

Asynchronous tasks can be added
among locations: x.m(w) (in z)

Elvira Albert, UCM Resource Analysis 21/37

Resource analysis with cost centers

x

p q m

y

r p

z

t u

Using cost analysis so far:
C = Up + Uq + Um + Ur + Up + · · ·+ Ut + Uu

We aim at having the cost at the level of
distributed components
Cx = Up + Uq + Um Cy = Ur + Up . . .

Idea: use cost centers to separate the cost
c(x), c(y), c(z)

When we analyze an instruction i , its cost Ci

is added to the cost center of the x
component: c(x) · Ci

Global cost expression:

c(x)·(Up+Uq+Um) + c(y)·(Ur+Up) + c(z)·(Ut+ . . .)

Elvira Albert, UCM Resource Analysis 22/37

Resource analysis with cost centers

x

p q m

y

r p

z

t u

Using cost analysis so far:
C = Up + Uq + Um + Ur + Up + · · ·+ Ut + Uu

We aim at having the cost at the level of
distributed components
Cx = Up + Uq + Um Cy = Ur + Up . . .

Idea: use cost centers to separate the cost
c(x), c(y), c(z)

When we analyze an instruction i , its cost Ci

is added to the cost center of the x
component: c(x) · Ci

Global cost expression:

c(x)·(Up+Uq+Um) + c(y)·(Ur+Up) + c(z)·(Ut+ . . .)

Elvira Albert, UCM Resource Analysis 22/37

Resource analysis with cost centers

x

p q m

y

r p

z

t u

Using cost analysis so far:
C = Up + Uq + Um + Ur + Up + · · ·+ Ut + Uu

We aim at having the cost at the level of
distributed components
Cx = Up + Uq + Um Cy = Ur + Up . . .

Idea: use cost centers to separate the cost
c(x), c(y), c(z)

When we analyze an instruction i , its cost Ci

is added to the cost center of the x
component: c(x) · Ci

Global cost expression:

c(x)·(Up+Uq+Um) + c(y)·(Ur+Up) + c(z)·(Ut+ . . .)

Elvira Albert, UCM Resource Analysis 22/37

Resource analysis with cost centers

x

p q m

y

r p

z

t u

Using cost analysis so far:
C = Up + Uq + Um + Ur + Up + · · ·+ Ut + Uu

We aim at having the cost at the level of
distributed components
Cx = Up + Uq + Um Cy = Ur + Up . . .

Idea: use cost centers to separate the cost
c(x), c(y), c(z)

When we analyze an instruction i , its cost Ci

is added to the cost center of the x
component: c(x) · Ci

Global cost expression:

c(x)·(Up+Uq+Um) + c(y)·(Ur+Up) + c(z)·(Ut+ . . .)

Elvira Albert, UCM Resource Analysis 22/37

Resource analysis with cost centers

x

p q m

y

r p

z

t u

Using cost analysis so far:
C = Up + Uq + Um + Ur + Up + · · ·+ Ut + Uu

We aim at having the cost at the level of
distributed components
Cx = Up + Uq + Um Cy = Ur + Up . . .

Idea: use cost centers to separate the cost
c(x), c(y), c(z)

When we analyze an instruction i , its cost Ci

is added to the cost center of the x
component: c(x) · Ci

Global cost expression:

c(x)·(Up+Uq+Um)+c(y)·(Ur+Up)+c(z)·(Ut+Uu)

Elvira Albert, UCM Resource Analysis 22/37

Resource analysis with cost centers

x

p q m

y

r p

z

t u

Using cost analysis so far:
C = Up + Uq + Um + Ur + Up + · · ·+ Ut + Uu

We aim at having the cost at the level of
distributed components
Cx = Up + Uq + Um Cy = Ur + Up . . .

Idea: use cost centers to separate the cost
c(x), c(y), c(z)

When we analyze an instruction i , its cost Ci

is added to the cost center of the x
component: c(x) · Ci

Global cost expression:

c(x)·(Up+Uq+Um)+((((
((c(y)·(Ur+Up)+((((

((
c(z)·(Ut+Uu)

Elvira Albert, UCM Resource Analysis 22/37

Resource analysis with cost centers

x

p q m

y

r p

z

t u

Using cost analysis so far:
C = Up + Uq + Um + Ur + Up + · · ·+ Ut + Uu

We aim at having the cost at the level of
distributed components
Cx = Up + Uq + Um Cy = Ur + Up . . .

Idea: use cost centers to separate the cost
c(x), c(y), c(z)

When we analyze an instruction i , its cost Ci

is added to the cost center of the x
component: c(x) · Ci

Global cost expression:

((((
((((c(x)·(Up+Uq+Um) + c(y)·(Ur+Up) +((((

((
c(z)·(Ut+Uu)

Elvira Albert, UCM Resource Analysis 22/37

Resource analysis with cost centers

x

p q m

y

r p

z

t u

Using cost analysis so far:
C = Up + Uq + Um + Ur + Up + · · ·+ Ut + Uu

We aim at having the cost at the level of
distributed components
Cx = Up + Uq + Um Cy = Ur + Up . . .

Idea: use cost centers to separate the cost
c(x), c(y), c(z)

When we analyze an instruction i , its cost Ci

is added to the cost center of the x
component: c(x) · Ci

Global cost expression:

((((
((((c(x)·(Up+Uq+Um) +((((

((c(y)·(Ur+Up) + c(z)·(Ut+Uu)

Elvira Albert, UCM Resource Analysis 22/37

Cost centers of different types

x

p q m

y

r p

z

t u

Cost centers are a general concept that
allows us to distinguish within the UB
different aspects:

Component cost centers: c(x), c(y)..

Program point cost centers: cost
center c(pp) per pp:acquire(e)
for (x=0;x<n;x++) pp:acquire(e)

c(pp) ∗ n ∗max(e) +c(pp2) ∗ ...

Task level centers: cost center c(m)
per method

c(m) ∗ Cm+c(p) ∗ ...

Multi-component cost centers: cost
centers of the form c(z , x), i.e., when we
find an instruction x.m(w) in z we do
c(z , x) ∗ size(w)

Elvira Albert, UCM Resource Analysis 23/37

Cost centers of different types

x

p q m

y

r p

z

t u

Cost centers are a general concept that
allows us to distinguish within the UB
different aspects:

Component cost centers: c(x), c(y)..

Program point cost centers: cost
center c(pp) per pp:acquire(e)
for (x=0;x<n;x++) pp:acquire(e)

c(pp) ∗ n ∗max(e) +c(pp2) ∗ ...

Task level centers: cost center c(m)
per method

c(m) ∗ Cm+c(p) ∗ ...

Multi-component cost centers: cost
centers of the form c(z , x), i.e., when we
find an instruction x.m(w) in z we do
c(z , x) ∗ size(w)

Elvira Albert, UCM Resource Analysis 23/37

Cost centers of different types

x

p q m

y

r p

z

t u

Cost centers are a general concept that
allows us to distinguish within the UB
different aspects:

Component cost centers: c(x), c(y)..

Program point cost centers: cost
center c(pp) per pp:acquire(e)
for (x=0;x<n;x++) pp:acquire(e)

c(pp) ∗ n ∗max(e) +c(pp2) ∗ ...

Task level centers: cost center c(m)
per method

c(m) ∗ Cm+c(p) ∗ ...

Multi-component cost centers: cost
centers of the form c(z , x), i.e., when we
find an instruction x.m(w) in z we do
c(z , x) ∗ size(w)

Elvira Albert, UCM Resource Analysis 23/37

Cost centers of different types

x

p q m

y

r p

z

t u

Cost centers are a general concept that
allows us to distinguish within the UB
different aspects:

Component cost centers: c(x), c(y)..

Program point cost centers: cost
center c(pp) per pp:acquire(e)
for (x=0;x<n;x++) pp:acquire(e)

c(pp) ∗ n ∗max(e) +c(pp2) ∗ ...

Task level centers: cost center c(m)
per method

c(m) ∗ Cm+c(p) ∗ ...

Multi-component cost centers: cost
centers of the form c(z , x), i.e., when we
find an instruction x.m(w) in z we do
c(z , x) ∗ size(w)

Elvira Albert, UCM Resource Analysis 23/37

Cost centers of different types

x

p q m

y

r p

z

t u

Cost centers are a general concept that
allows us to distinguish within the UB
different aspects:

Component cost centers: c(x), c(y)..

Program point cost centers: cost
center c(pp) per pp:acquire(e)
for (x=0;x<n;x++) pp:acquire(e)

c(pp) ∗ n ∗max(e) +c(pp2) ∗ ...

Task level centers: cost center c(m)
per method

c(m) ∗ Cm+c(p) ∗ ...

Multi-component cost centers: cost
centers of the form c(z , x), i.e., when we
find an instruction x.m(w) in z we do
c(z , x) ∗ size(w)

Elvira Albert, UCM Resource Analysis 23/37

Part 3: Distributed Systems

Parallel Cost

Elvira Albert, UCM Resource Analysis 24/37

Parallel Cost

Serial cost: accumulate costs from different locations

Limitation: ignore the parallelism of the distributed execution
model.

New analysis: infer the parallel cost of distributed systems
(maximum cost between parallel tasks)

Use: know if an application succeeds in exploiting the
parallelism of the distributed locations, overall resource
consumption

Elvira Albert, UCM Resource Analysis 25/37

Parallel Cost

void m (i n t n) {
. . . // m1

x . p (n) ;
. . . // m2

y . q (n) ;
. . . // m3

}

Elvira Albert, UCM Resource Analysis 26/37

Parallel Cost

void m (i n t n) {
. . . // m1

x . p (n) ;
. . . // m2

y . q (n) ;
. . . // m3

}

Trace 1©
o x y

m1

m2

m3

p

q

P1

Elvira Albert, UCM Resource Analysis 26/37

Parallel Cost

void m (i n t n) {
. . . // m1

x . p (n) ;
. . . // m2

y . q (n) ;
. . . // m3

}

Trace 1©
o x y

m1

m2

m3

p

q

P1

P1 = Um1 + Um2 + Um3

Elvira Albert, UCM Resource Analysis 26/37

Parallel Cost

void m (i n t n) {
. . . // m1

x . p (n) ;
. . . // m2

y . q (n) ;
. . . // m3

}

P1 = Um1 + Um2 + Um3
Trace 2©
o x y

m1

m2

m3

p
q

P2

Elvira Albert, UCM Resource Analysis 26/37

Parallel Cost

void m (i n t n) {
. . . // m1

x . p (n) ;
. . . // m2

y . q (n) ;
. . . // m3

}

P1 = Um1 + Um2 + Um3
Trace 2©
o x y

m1

m2

m3

p
q

P2 P2 = Um1 + Up

Elvira Albert, UCM Resource Analysis 26/37

Parallel Cost

void m (i n t n) {
. . . // m1

x . p (n) ;
. . . // m2

y . q (n) ;
. . . // m3

}

P1 = Um1 + Um2 + Um3

P2 = Um1 + Up

Trace 3©
o x y

m1

m2

m3

p

q

P3

Elvira Albert, UCM Resource Analysis 26/37

Parallel Cost

void m (i n t n) {
. . . // m1

x . p (n) ;
. . . // m2

y . q (n) ;
. . . // m3

}

P1 = Um1 + Um2 + Um3

P2 = Um1 + Up

Trace 3©
o x y

m1

m2

m3

p

q

P3

P3 = Um1 + Um2 + Uq

Elvira Albert, UCM Resource Analysis 26/37

Parallel Cost

void m (i n t n) {
. . . // m1

x . p (n) ;
. . . // m2

y . q (n) ;
. . . // m3

}

P1 = Um1 + Um2 + Um3

P2 = Um1 + Up

Trace 3©
o x y

m1

m2

m3

p

q

P3

P3 = Um1 + Um2 + Uq

The parallel cost of the program is
the maximum of all possible traces:

P = max(P1,P2,P3) < Serial

Elvira Albert, UCM Resource Analysis 26/37

Parallel Cost Analysis

Program Distributed Flow Graph

Elvira Albert, UCM Resource Analysis 27/37

Parallel Cost Analysis

Program Distributed Flow Graph

m1

m2

m3

p

q

Elvira Albert, UCM Resource Analysis 27/37

Parallel Cost Analysis

Program Distributed Flow Graph

m1

m2

m3

p

q

m1

m2

m3

Elvira Albert, UCM Resource Analysis 27/37

Parallel Cost Analysis

Program Distributed Flow Graph

m1

m2

m3

p

q

m1

m2

m3

N1={m1,m2,m3}

Elvira Albert, UCM Resource Analysis 27/37

Parallel Cost Analysis

Program Distributed Flow Graph

m1

m2

m3

p

q

m1 p

N1={m1,m2,m3}

Elvira Albert, UCM Resource Analysis 27/37

Parallel Cost Analysis

Program Distributed Flow Graph

m1

m2

m3

p

q

m1 p

N1={m1,m2,m3} N2={m1, p}

Elvira Albert, UCM Resource Analysis 27/37

Parallel Cost Analysis

Program Distributed Flow Graph

m1

m2

m3

p

q

m1

m2 q

N1={m1,m2,m3} N2={m1, p}

Elvira Albert, UCM Resource Analysis 27/37

Parallel Cost Analysis

Program Distributed Flow Graph

m1

m2

m3

p

q

m1

m2 q

N1={m1,m2,m3} N2={m1, p} N3={m1,m2, q}

Elvira Albert, UCM Resource Analysis 27/37

Parallel Cost Analysis

Program Distributed Flow Graph

m1

m2

m3

p

q

N1={m1,m2,m3} N2={m1, p} N3={m1,m2, q}

Serial=c(m1)·Um1 + c(m2)·Um2 + c(m3)·Um3 + c(p)·Up + c(q)·Uq

Elvira Albert, UCM Resource Analysis 27/37

Parallel Cost Analysis

Program Distributed Flow Graph

m1

m2

m3

p

q

m1

m2

m3

N1={m1,m2,m3}N1={m1,m2,m3} N2={m1, p} N3={m1,m2, q}

Serial=c(m1)·Um1 + c(m2)·Um2 + c(m3)·Um3 + c(p)·Up + c(q)·Uq

Elvira Albert, UCM Resource Analysis 27/37

Parallel Cost Analysis

Program Distributed Flow Graph

m1

m2

m3

p

q

m1

m2

m3

N1={m1,m2,m3}N1={m1,m2,m3} N2={m1, p} N3={m1,m2, q}

Serial=c(m1)·Um1 + c(m2)·Um2 + c(m3)·Um3 + c(p)·Up + c(q)·Uq

UB|N1=Um1+Um2+Um3

Serial=c(m1)·Um1 + c(m2)·Um2 + c(m3)·Um3 +���
�c(p)·Up +���

�c(q)·Uq

Elvira Albert, UCM Resource Analysis 27/37

Parallel Cost Analysis

Program Distributed Flow Graph

m1

m2

m3

p

q

m1 p

N1={m1,m2,m3} N2={m1, p}N2={m1, p} N3={m1,m2, q}

Serial=c(m1)·Um1 + c(m2)·Um2 + c(m3)·Um3 + c(p)·Up + c(q)·Uq

UB|N1=Um1+Um2+Um3

Elvira Albert, UCM Resource Analysis 27/37

Parallel Cost Analysis

Program Distributed Flow Graph

m1

m2

m3

p

q

m1 p

N1={m1,m2,m3} N2={m1, p}N2={m1, p} N3={m1,m2, q}

Serial=c(m1)·Um1 + c(m2)·Um2 + c(m3)·Um3 + c(p)·Up + c(q)·Uq

UB|N1=Um1+Um2+Um3
UBN2=Um1 + Up

Serial=c(m1)·Um1 +���
��c(m2)·Um2 +���

��c(m3)·Um3 + c(p)·Up +���
�c(q)·Uq

Elvira Albert, UCM Resource Analysis 27/37

Parallel Cost Analysis

Program Distributed Flow Graph

m1

m2

m3

p

q

m1

m2 q

N1={m1,m2,m3} N2={m1, p} N3={m1,m2, q}N3={m1,m2, q}

Serial=c(m1)·Um1 + c(m2)·Um2 + c(m3)·Um3 + c(p)·Up + c(q)·Uq

UB|N1=Um1+Um2+Um3
UBN2=Um1 + Up

Elvira Albert, UCM Resource Analysis 27/37

Parallel Cost Analysis

Program Distributed Flow Graph

m1

m2

m3

p

q

m1

m2 q

N1={m1,m2,m3} N2={m1, p} N3={m1,m2, q}N3={m1,m2, q}

Serial=c(m1)·Um1 + c(m2)·Um2 + c(m3)·Um3 + c(p)·Up + c(q)·Uq

UB|N1=Um1+Um2+Um3
UBN2=Um1 + Up UBN3 = Um1 + Um2 + Uq

Serial=c(m1)·Um1 + c(m2)·Um2 +���
��c(m3)·Um3 +���

�c(p)·Up + c(q)·Uq

Elvira Albert, UCM Resource Analysis 27/37

Parallel Cost Analysis

Program Distributed Flow Graph

m1

m2

m3

p

q

N1={m1,m2,m3} N2={m1, p} N3={m1,m2, q}

Serial=c(m1)·Um1 + c(m2)·Um2 + c(m3)·Um3 + c(p)·Up + c(q)·Uq

UB|N1=Um1+Um2+Um3
UBN2=Um1 + Up UBN3 = Um1 + Um2 + Uq

The parallel cost of the program is
the maximum of all possible UB’s:

UBP = max(UBN1 ,UBN2 ,UBN3) < Serial

UB=c(m1)·Um1 + c(m2)·Um2 + c(m3)·Um3 + c(p)·Up + c(q)·Uq

Elvira Albert, UCM Resource Analysis 27/37

Demo SACO

Elvira Albert, UCM Resource Analysis 28/37

Part 2: Distributed Systems

Peak Cost

Elvira Albert, UCM Resource Analysis 29/37

Motivation

Non-cumulative resources: are acquired and then released

New notion of cost: infer the peak cost vs. the total cost

Technical difficulty: not enough to reason on the final state
of the execution, the upper bound on the cost can happen at
any intermediate step

Key feature: framework can be instantiated to measure any
type of non-cumulative resource that is acquired and
(optionally) freed.

Elvira Albert, UCM Resource Analysis 30/37

Handling resources

Two instructions for handling resources:

y = acquire(e) allocates the amount of resources stated by
expression e.
release y releases resources referenced by y.

resource leaks when

Reusing a resource variable without releasing previous
resources.
Reaching the end of a method without releasing a resource
variable.

Elvira Albert, UCM Resource Analysis 31/37

Peak Cost: Motivating Example

1 main (i n t s , i n t n) {
2 x = acquire(k1) ;
3 r = acquire(k2) ;
4 r = acquire(s) ;
5 release r ;
6 y = acquire(n) ;
7 release x ;
8 }

Elvira Albert, UCM Resource Analysis 32/37

Peak Cost: Motivating Example

1 main (i n t s , i n t n) {
2 x = acquire(k1) ;
3 r = acquire(k2) ;
4 r = acquire(s) ;
5 release r ;
6 y = acquire(n) ;
7 release x ;
8 }

x :k1

L2

à

Elvira Albert, UCM Resource Analysis 32/37

Peak Cost: Motivating Example

1 main (i n t s , i n t n) {
2 x = acquire(k1) ;
3 r = acquire(k2) ;
4 r = acquire(s) ;
5 release r ;
6 y = acquire(n) ;
7 release x ;
8 }

x :k1

L2

r :k2

x :k1

L3

à

Elvira Albert, UCM Resource Analysis 32/37

Peak Cost: Motivating Example

1 main (i n t s , i n t n) {
2 x = acquire(k1) ;
3 r = acquire(k2) ;
4 r = acquire(s) ;
5 release r ;
6 y = acquire(n) ;
7 release x ;
8 }

x :k1

L2

r :k2

x :k1

L3

r :s

r :k2

x :k1

L4

à

Elvira Albert, UCM Resource Analysis 32/37

Peak Cost: Motivating Example

1 main (i n t s , i n t n) {
2 x = acquire(k1) ;
3 r = acquire(k2) ;
4 r = acquire(s) ;
5 release r ;
6 y = acquire(n) ;
7 release x ;
8 }

x :k1

L2

r :k2

x :k1

L3

r :s

r :k2

x :k1

L4

r :k2

x :k1

L5

à

Elvira Albert, UCM Resource Analysis 32/37

Peak Cost: Motivating Example

1 main (i n t s , i n t n) {
2 x = acquire(k1) ;
3 r = acquire(k2) ;
4 r = acquire(s) ;
5 release r ;
6 y = acquire(n) ;
7 release x ;
8 }

x :k1

L2

r :k2

x :k1

L3

r :s

r :k2

x :k1

L4

r :k2

x :k1

L5

y :n

r :k2

x :k1

L6

à

Elvira Albert, UCM Resource Analysis 32/37

Peak Cost: Motivating Example

1 main (i n t s , i n t n) {
2 x = acquire(k1) ;
3 r = acquire(k2) ;
4 r = acquire(s) ;
5 release r ;
6 y = acquire(n) ;
7 release x ;
8 }

x :k1

L2

r :k2

x :k1

L3

r :s

r :k2

x :k1

L4

r :k2

x :k1

L5

y :n

r :k2

x :k1

L6

y :n

r :k2

L7

à

Elvira Albert, UCM Resource Analysis 32/37

Peak Cost: Motivating Example

1 main (i n t s , i n t n) {
2 x = acquire(k1) ;
3 r = acquire(k2) ;
4 r = acquire(s) ;
5 release r ;
6 y = acquire(n) ;
7 release x ;
8 } Total = k1 + k2 + s + n

x :k1

L2

r :k2

x :k1

L3

r :s

r :k2

x :k1

L4

r :k2

x :k1

L5

y :n

r :k2

x :k1

L6

y :n

r :k2

L7

Elvira Albert, UCM Resource Analysis 32/37

Peak Cost: Motivating Example

1 main (i n t s , i n t n) {
2 x = acquire(k1) ;
3 r = acquire(k2) ;
4 r = acquire(s) ;
5 release r ;
6 y = acquire(n) ;
7 release x ;
8 } Total = k1 + k2 + s + n

x :k1

L2

r :k2

x :k1

L3

r :s

r :k2

x :k1

L4

r :k2

x :k1

L5

y :n

r :k2

x :k1

L6

y :n

r :k2

L7

P1 = k1 + k2 + s

P1

Elvira Albert, UCM Resource Analysis 32/37

Peak Cost: Motivating Example

1 main (i n t s , i n t n) {
2 x = acquire(k1) ;
3 r = acquire(k2) ;
4 r = acquire(s) ;
5 release r ;
6 y = acquire(n) ;
7 release x ;
8 } Total = k1 + k2 + s + n

x :k1

L2

r :k2

x :k1

L3

r :s

r :k2

x :k1

L4

r :k2

x :k1

L5

y :n

r :k2

x :k1

L6

y :n

r :k2

L7

P1 = k1 + k2 + s P2 = k1 + k2 + n

P2

Elvira Albert, UCM Resource Analysis 32/37

Peak Cost: Motivating Example

1 main (i n t s , i n t n) {
2 x = acquire(k1) ;
3 r = acquire(k2) ;
4 r = acquire(s) ;
5 release r ;
6 y = acquire(n) ;
7 release x ;
8 } Total = k1 + k2 + s + n

x :k1

L2

r :k2

x :k1

L3

r :s

r :k2

x :k1

L4

r :k2

x :k1

L5

y :n

r :k2

x :k1

L6

y :n

r :k2

L7

P1 = k1 + k2 + s P2 = k1 + k2 + n

The peak cost is the maximum between them:

Peak = max(P1,P2) < Total

Elvira Albert, UCM Resource Analysis 32/37

Simultaneous resource analysis

1 main (i n t s , i n t n) {
2 x = acquire(k1) ;
3 r = acquire(k2) ;
4 r = acquire(s) ;

5 release r ;
6 y = acquire(n) ;
7 release x ;
8 }

Elvira Albert, UCM Resource Analysis 33/37

Simultaneous resource analysis

1 main (i n t s , i n t n) {
2 x = acquire(k1) ;
3 r = acquire(k2) ;
4 r = acquire(s) ;

5 release r ;
6 y = acquire(n) ;
7 release x ;
8 }

A1 = {a2, a3, a4}

à
à
à

Elvira Albert, UCM Resource Analysis 33/37

Simultaneous resource analysis

1 main (i n t s , i n t n) {
2 x = acquire(k1) ;
3 r = acquire(k2) ;
4 r = acquire(s) ;

5 release r ;
6 y = acquire(n) ;
7 release x ;
8 }

A1 = {a2, a3, a4}

à
à

à

A2 = {a2, a3, a6}

Elvira Albert, UCM Resource Analysis 33/37

Simultaneous resource analysis

x :k1

L2

r :k2

x :k1

L3

r :s

r :k2

x :k1

L4

r :k2

x :k1

L5

y :n

r :k2

x :k1

L6

y :n

r :k2

L7

A1 A2

A1 = {a2, a3, a4} A2 = {a2, a3, a6}

Elvira Albert, UCM Resource Analysis 33/37

Simultaneous resource analysis

x :k1

L2

r :k2

x :k1

L3

r :s

r :k2

x :k1

L4

r :k2

x :k1

L5

y :n

r :k2

x :k1

L6

y :n

r :k2

L7

A1 = {a2, a3, a4} A2 = {a2, a3, a6}

Total = c(a2) · k1 + c(a3) · k2 + c(a4) · s + c(a6) · n

Elvira Albert, UCM Resource Analysis 33/37

Simultaneous resource analysis

x :k1

L2

r :k2

x :k1

L3

r :s

r :k2

x :k1

L4

r :k2

x :k1

L5

y :n

r :k2

x :k1

L6

y :n

r :k2

L7

A1

A1 = {a2, a3, a4} A2 = {a2, a3, a6}

Total = c(a2) · k1 + c(a3) · k2 + c(a4) · s + c(a6) · nTotal = c(a2) · k1 + c(a3) · k2 + c(a4) · s +����c(a6) · n

UB|A1 = k1 + k2 + s

Elvira Albert, UCM Resource Analysis 33/37

Simultaneous resource analysis

x :k1

L2

r :k2

x :k1

L3

r :s

r :k2

x :k1

L4

r :k2

x :k1

L5

y :n

r :k2

x :k1

L6

y :n

r :k2

L7

A2

A1 = {a2, a3, a4} A2 = {a2, a3, a6}

Total = c(a2) · k1 + c(a3) · k2 + c(a4) · s + c(a6) · nTotal = c(a2) · k1 + c(a3) · k2 +����c(a4) · s + c(a6) · n

UB|A1 = k1 + k2 + s UB|A2 = k1 + n + k2

Elvira Albert, UCM Resource Analysis 33/37

Simultaneous resource analysis

x :k1

L2

r :k2

x :k1

L3

r :s

r :k2

x :k1

L4

r :k2

x :k1

L5

y :n

r :k2

x :k1

L6

y :n

r :k2

L7

A1 = {a2, a3, a4} A2 = {a2, a3, a6}

Total = c(a2) · k1 + c(a3) · k2 + c(a4) · s + c(a6) · nTotal = c(a2) · k1 + c(a3) · k2 + c(a4) · n + c(a6) · s

UB|A1 = k1 + k2 + s UB|A2 = k1 + n + k2

The UB on the peak cost of the program is
the maximum of all UB’s:

UBN = max(UBA1 ,UBA2) < Total

Elvira Albert, UCM Resource Analysis 33/37

Demo SACO

Elvira Albert, UCM Resource Analysis 34/37

Summary Distributed Systems

Cost centers based resource analysis APLAS’11

New performance indicators iFM’13

Parallel cost analysis SAS’15

Peak cost analysis TACAS’15

Elvira Albert, UCM Resource Analysis 35/37

Conclusions

Cost Analysis

research on cost analysis dates back to 1975
generating and solving different forms of recurrence relations

From sequential to concurrent systems

Concurrent interleavings
May-happen-in-parallel based analysis
Rely-guarantee

From concurrent to distributed systems

New performance indicators
New notions of cost

Parallel cost
Peak cost

Integrated in the SACO system, Static Analyzer for
Concurrent Objects

Elvira Albert, UCM Resource Analysis 36/37

Conclusions

Cost Analysis

research on cost analysis dates back to 1975
generating and solving different forms of recurrence relations

From sequential to concurrent systems

Concurrent interleavings
May-happen-in-parallel based analysis
Rely-guarantee

From concurrent to distributed systems

New performance indicators
New notions of cost

Parallel cost
Peak cost

Integrated in the SACO system, Static Analyzer for
Concurrent Objects

Elvira Albert, UCM Resource Analysis 36/37

Conclusions

Cost Analysis

research on cost analysis dates back to 1975
generating and solving different forms of recurrence relations

From sequential to concurrent systems

Concurrent interleavings
May-happen-in-parallel based analysis
Rely-guarantee

From concurrent to distributed systems

New performance indicators
New notions of cost

Parallel cost
Peak cost

Integrated in the SACO system, Static Analyzer for
Concurrent Objects

Elvira Albert, UCM Resource Analysis 36/37

Conclusions

Cost Analysis

research on cost analysis dates back to 1975
generating and solving different forms of recurrence relations

From sequential to concurrent systems

Concurrent interleavings
May-happen-in-parallel based analysis
Rely-guarantee

From concurrent to distributed systems

New performance indicators
New notions of cost

Parallel cost
Peak cost

Integrated in the SACO system, Static Analyzer for
Concurrent Objects

Elvira Albert, UCM Resource Analysis 36/37

Credits

http://costa.ls.fi.upm.es

Elvira Albert
Puri Arenas
Einar Broch Johnsen
Jesús Correas
Jesús Domenech
Antonio Flores
Samir Genaim
Miguel Gómez-Zamalloa
Pablo Gordillo
Miguel Isabel
Enrique Mart́ın-Mart́ın
Germán Puebla
Guillermo Román
Damiano Zanardini

Elvira Albert, UCM Resource Analysis 37/37

http://costa.ls.fi.upm.es

	Introduction
	Resource Analysis of Distributed Systems
	Conclusions
	Credits

