
Challenges for Timing Analysis of
Multi-Core Architectures

Jan Reineke @

DICE-FOPARA, Uppsala, Sweden
April 22, 2017

computer science

saarland
university

2

The Context: Hard Real-Time Systems

Safety-critical applications:
¢  Avionics, automotive, train industries, manufacturing

¢  Embedded software must
l  compute correct control signals,
l  within time bounds.

computer science

saarland
universityHard Real-Time Systems

Safety-critical applications:
Avionics, automotive, train industries, manufacturing control

Side airbag in car Crankshaft-synchronous tasks
Reaction in < 10 msec Reaction in < 45 µsec

Embedded controllers must finish their tasks within given time

bounds.
Developers would like to know the Worst-Case Execution Time

(WCET) to give a guarantee.

Jan Reineke Timing Analysis and Timing Predictability 11. Februar 2013 4 / 38

computer science

saarland
universityHard Real-Time Systems

Safety-critical applications:
Avionics, automotive, train industries, manufacturing control

Side airbag in car Crankshaft-synchronous tasks
Reaction in < 10 msec Reaction in < 45 µsec

Embedded controllers must finish their tasks within given time

bounds.
Developers would like to know the Worst-Case Execution Time

(WCET) to give a guarantee.

Jan Reineke Timing Analysis and Timing Predictability 11. Februar 2013 4 / 38

Side airbag in car
Reaction in < 10 msec

Crankshaft-synchronous tasks
Reaction in < 45 microsec

3

The Timing Analysis Problem

Set of Software Tasks

Timing Requirements
?	

Microarchitecture

+	
Our Vision: PRET Machines

PREcision-Timed processors: Performance & Predicability

+ = PRET

(Image: John Harrison’s H4, first clock to solve longitude problem)

Precision-Timed (PRET) Machines – p. 11/19

4

“Standard Approach” for Timing Analysis

Two-phase approach:
1.  Determine WCET (worst-case execution time)

bounds for each task on microarchitecture
2.  Perform response-time analysis

Simple interface between WCET analysis and
response-time analysis: WCET bounds

5

computer science

saarland
universityWhat does the execution time depend on?

1 The input, determining which path is taken through the program.
2 The state of the hardware platform:

I Due to caches, pipelines, speculation, etc.
3 Interferences from the environment:

I External interferences as seen from the analyzed task on shared
busses, caches, memory.

Simple
CPU

Memory

Jan Reineke Timing Analysis and Timing Predictability 11. Februar 2013 6 / 38

What does the execution time depend on?

¢  The input, determining which path is taken
through the program.

6

computer science

saarland
universityWhat does the execution time depend on?

1 The input, determining which path is taken through the program.
2 The state of the hardware platform:

I Due to caches, pipelines, speculation, etc.
3 Interferences from the environment:

I External interferences as seen from the analyzed task on shared
busses, caches, memory.

Simple
CPU

Memory

Jan Reineke Timing Analysis and Timing Predictability 11. Februar 2013 6 / 38

computer science

saarland
universityWhat does the execution time depend on?

1 The input, determining which path is taken through the program.
2 The state of the hardware platform:

I Due to caches, pipelines, speculation, etc.
3 Interferences from the environment:

I External interferences as seen from the analyzed task on shared
busses, caches, memory.

Complex CPU
(out-of-order
execution,

branch
prediction, etc.)

Main
Memory

L1
Cache

Jan Reineke Timing Analysis and Timing Predictability 11. Februar 2013 6 / 38

What does the execution time depend on?

¢  The input, determining which path is taken
through the program.

¢  The state of the hardware platform:
l  Due to caches, pipelining, speculation, etc.

7

Example of Influence of
Microarchitectural State

PowerPC 755

Reineke et al., Berkeley 5

Example of Influence of

Microarchitectural State computer science

saarland
universityAccess Time

x=a+b;
LOAD r2, _a
LOAD r1, _b
ADD r3,r2,r1

MPC5xx PPC755

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 5 / 63

computer science

saarland
universityAccess Time

x=a+b;
LOAD r2, _a
LOAD r1, _b
ADD r3,r2,r1

MPC5xx PPC755

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 5 / 63

Motorola PowerPC 755

Courtesy of Reinhard Wilhelm.

Reineke et al., Berkeley 5

Example of Influence of

Microarchitectural State computer science

saarland
universityAccess Time

x=a+b;
LOAD r2, _a
LOAD r1, _b
ADD r3,r2,r1

MPC5xx PPC755

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 5 / 63

computer science

saarland
universityAccess Time

x=a+b;
LOAD r2, _a
LOAD r1, _b
ADD r3,r2,r1

MPC5xx PPC755

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 5 / 63

Motorola PowerPC 755

Courtesy of Reinhard Wilhelm.

8

computer science

saarland
universityWhat does the execution time depend on?

1 The input, determining which path is taken through the program.
2 The state of the hardware platform:

I Due to caches, pipelines, speculation, etc.
3 Interferences from the environment:

I External interferences as seen from the analyzed task on shared
busses, caches, memory.

Simple
CPU

Memory

Jan Reineke Timing Analysis and Timing Predictability 11. Februar 2013 6 / 38

computer science

saarland
universityWhat does the execution time depend on?

1 The input, determining which path is taken through the program.
2 The state of the hardware platform:

I Due to caches, pipelines, speculation, etc.
3 Interferences from the environment:

I External interferences as seen from the analyzed task on shared
busses, caches, memory.

Complex CPU
(out-of-order
execution,

branch
prediction, etc.)

Main
Memory

L1
Cache

Jan Reineke Timing Analysis and Timing Predictability 11. Februar 2013 6 / 38

computer science

saarland
universityWhat does the execution time depend on?

1 The input, determining which path is taken through the program.
2 The state of the hardware platform:

I Due to caches, pipelines, speculation, etc.
3 Interferences from the environment:

I External interferences as seen from the analyzed task on shared
busses, caches, memory.

Complex
CPU

L1
Cache

Complex
CPU

L1
Cache

...
L2

Cache
Main

Memory

Jan Reineke Timing Analysis and Timing Predictability 11. Februar 2013 6 / 38

What does the execution time depend on?

¢  The input, determining which path is taken
through the program.

¢  The state of the hardware platform:
l  Due to caches, pipelining, speculation, etc.

¢  Interference from the environment:
l  External interference as seen from the analyzed

task on shared busses, caches, memory.

9

Example of Influence of Corunning Tasks in
Multicores

Radojkovic et al. (ACM TACO, 2012) on Intel Atom
and Intel Core 2 Quad:

 up to 14x slow-down due to interference
 on shared L2 cache and memory controller

10

computer science

saarland
universityWhat does the execution time depend on?

1 The input, determining which path is taken through the program.
2 The state of the hardware platform:

I Due to caches, pipelines, speculation, etc.
3 Interferences from the environment:

I External interferences as seen from the analyzed task on shared
busses, caches, memory.

Simple
CPU

Memory

Jan Reineke Timing Analysis and Timing Predictability 11. Februar 2013 6 / 38

computer science

saarland
universityWhat does the execution time depend on?

1 The input, determining which path is taken through the program.
2 The state of the hardware platform:

I Due to caches, pipelines, speculation, etc.
3 Interferences from the environment:

I External interferences as seen from the analyzed task on shared
busses, caches, memory.

Complex CPU
(out-of-order
execution,

branch
prediction, etc.)

Main
Memory

L1
Cache

Jan Reineke Timing Analysis and Timing Predictability 11. Februar 2013 6 / 38

computer science

saarland
universityWhat does the execution time depend on?

1 The input, determining which path is taken through the program.
2 The state of the hardware platform:

I Due to caches, pipelines, speculation, etc.
3 Interferences from the environment:

I External interferences as seen from the analyzed task on shared
busses, caches, memory.

Complex
CPU

L1
Cache

Complex
CPU

L1
Cache

...
L2

Cache
Main

Memory

Jan Reineke Timing Analysis and Timing Predictability 11. Februar 2013 6 / 38

What does the execution time depend on?

¢  The input, determining which path is taken
through the program.

¢  The state of the hardware platform:
l  Due to caches, pipelining, speculation, etc.

¢  Interference from the environment:
l  External interference as seen from the analyzed

task on shared busses, caches, memory.

11

Three Challenges:

Modeling
How to obtain sound timing models?

Analysis
How to precisely & efficiently bound the WCET?

Design
How to design microarchitectures that enable
precise & efficient WCET analysis?

12

The Modeling Challenge

Predictions about the future behavior of a system
are always based on models of the system.

All models are wrong, but some are useful.

George Box (Statistiker)

Our Vision: PRET Machines

PREcision-Timed processors: Performance & Predicability

+ = PRET

(Image: John Harrison’s H4, first clock to solve longitude problem)

Precision-Timed (PRET) Machines – p. 11/19

Timing
Model

Micro-
architecture

?	
Model

13

The Need for Timing Models

The ISA only partially defines the behavior of
microarchitectures: it abstracts from timing.

How to obtain timing models?
¢  Hardware manuals
¢  Manually devised microbenchmarks
¢  Machine learning

 Challenge: Introduce HW/SW contract to
capture timing behavior of microarchitectures.

14

Current Process of Deriving Timing Models

à Time-consuming, and
à error-prone.

Our Vision: PRET Machines

PREcision-Timed processors: Performance & Predicability

+ = PRET

(Image: John Harrison’s H4, first clock to solve longitude problem)

Precision-Timed (PRET) Machines – p. 11/19

Micro-
architecture

Timing
Model

?	

15

Can We Automate the Process? Our Vision: PRET Machines

PREcision-Timed processors: Performance & Predicability

+ = PRET

(Image: John Harrison’s H4, first clock to solve longitude problem)

Precision-Timed (PRET) Machines – p. 11/19

Micro-
architecture

Timing
Model

Perform
measurements on

hardware

Infer model

16

Can We Automate the Process? Our Vision: PRET Machines

PREcision-Timed processors: Performance & Predicability

+ = PRET

(Image: John Harrison’s H4, first clock to solve longitude problem)

Precision-Timed (PRET) Machines – p. 11/19

Micro-
architecture

Timing
Model

Perform
measurements on

hardware

Derive timing model automatically from measurements
on the hardware using methods from automata learning.

à  No manual effort, and
à  (under certain assumptions) provably correct.

Infer model

17

Proof-of-concept:
Automatic Modeling of the Cache Hierarchy

¢  Can be characterized by a few parameters:
l  ABC: associativity, block size, capacity
l  Replacement policy: finite automaton

chi [Abel and Reineke, RTAS] derives all of these
parameters fully automatically including
previously undocumented replacement policies.

DataTag

DataTag

DataTag

DataTag

A = Associativity

DataTag

DataTag

DataTag

DataTag

...

DataTag

DataTag

DataTag

DataTag

N = Number of Cache Sets

B = Block Size

18

Modeling Challenge:
Ongoing and Future Work

1.  Extend automata learning techniques to
account for prior knowledge
[NASA Formal Methods Symposium, 2016]

2.  Apply approach to other parts of the
microarchitecture:
l  Translation lookaside buffers, branch predictors
l  Shared caches in multicores including their coherency

protocols
l  Contemporary out-of-order cores

19

Analysis and Design Challenges

Precise & Efficient
Timing Analysis

How to precisely and efficiently
account for caches, pipelining,
speculation, etc.?

Design for
Predictability

How to design hardware to
allow for precise and
efficient analysis without
sacrificing performance?

20

The Analysis Challenge:
State of the Art

computer science

saarland
universityWhat does the execution time depend on?

1 The input, determining which path is taken through the program.
2 The state of the hardware platform:

I Due to caches, pipelines, speculation, etc.
3 Interferences from the environment:

I External interferences as seen from the analyzed task on shared
busses, caches, memory.

Complex
CPU

L1
Cache

Complex
CPU

L1
Cache

...
L2

Cache
Main

Memory

Jan Reineke Timing Analysis and Timing Predictability 11. Februar 2013 6 / 38

Private Caches
Precise & efficient abstractions, for
•  LRU [Ferdinand, 1999]
Not-as-precise but efficient abstractions, for
•  FIFO, PLRU, MRU [Grund and Reineke, 2008-2011]
Reasonably precise quantitative analyses, for
•  FIFO, MRU [Guan et al., 2012-2014]

Complex Pipelines
Precise but very inefficient analyses; little abstraction
Major challenge: timing anomalies

Shared Resources on
Multicores
 Major challenge: interference on
shared resources
 à execution time depends on
corunning tasks
 à need timing compositionality

21

Design
Hardware:
¢  Shared DRAM Controller [CODES+ISSS 11]
¢  Preemption-aware Cache [RTAS 14]
¢  Smooth Shared Caches [WAOA 15]
¢  Anomaly-free Pipelines [Correct Sys. Des. 15]

Software:
¢  Predictable Memory Allocation [ECRTS 11]
¢  Compilation for Predictability [RTNS 14]

Analysis
¢  Caches [SIGMETRICS 08, SAS 09, WCET 10, ECRTS 10, CAV 17]
¢  Branch Target Buffers [RTCSA 09, JSA 10]
¢  Preemption Cost [WCET 09, LCTES 10, RTNS 16]
¢  Architecture-Parametric Timing Analysis [RTAS 14]
¢  Multi-Core Timing Analysis [RTNS 15, DAC 16, RTNS 16]

Contributions to
Analysis and Design Challenges

Predictability Assessment
¢  (Randomized) Caches [RTS 07,

TECS 13, LITES 14, WAOA 15]
¢  Branch Target Buffers [JSA 10]
¢  Pipelines and Buses [TCAD 09]
¢  Load/Store-Unit [WCET 12]

¢  Timing Anomalies [WCET 06]
¢  Timing Compositionality [CRTS 13]

22

Timing Anomalies

computer science

saarland
universityState-of-the-art: Integrated WCET Analysis

Drawback Efficiency

Timing Anomalies hinder state space reduction

Sebastian Hahn Timing Compositionality 19 June 2013 6 / 19

Cache Miss
= Local Worst Case Cache Hit

Global Worst Case

leads to

Nondeterminism due
to uncertainty about
hardware state

Timing Anomalies in Dynamically Scheduled Microprocessors
T. Lundqvist, P. Stenström – RTSS 1999

23

Timing Anomalies

Timing Anomaly = Counterintuitive scenario in
which the “local worst case” does not imply
the “global worst case”.

Example: Scheduling Anomaly

A

A

Resource 1

Resource 2

Resource 1

Resource 2

C

B C

B

D E

D E

C ready

Bounds on multiprocessing timing anomalies
RL Graham - SIAM Journal on Applied Mathematics, 1969 – SIAM
(http://epubs.siam.org/doi/abs/10.1137/0117039)

24

Timing Anomalies
Consequences for Timing Analysis

Cannot exclude cases “locally”:
à  Need to consider all cases
à  May yield “State explosion problem” computer science

saarland
universityState-of-the-art: Integrated WCET Analysis

Drawback Efficiency

Timing Anomalies hinder state space reduction

Sebastian Hahn Timing Compositionality 19 June 2013 6 / 19

25

Conventional Wisdom

Simple in-order pipeline + LRU caches
 à no timing anomalies
à timing compositional

False!

26

Bad News: In-order Pipelines

We show such a pipeline has timing anomalies:

Toward Compact Abstractions for Processor Pipelines
S. Hahn, J. Reineke, and R. Wilhelm. In Correct System Design, 2015.

computer science

saarland
universityMicroarchitecture

An Example

Pipeline processes instructions in program order

Caches buffer recently accessed memory blocks

Fetch (IF)
Decode (ID)
Execute (EX)

Memory (MEM)
Write-back (WB)

I-cache

D-cache

Memory

Reinhard Wilhelm Abstractable Pipelines August 13, 2015 5 / 22

27

A Timing Anomaly
computer science

saarland
universityTiming Anomaly

load ...

nop

load r1, ...

div ..., r1

ret

(load r1, 0)

(load, 0)

load H IF ret load r1 M EX div

load M load r1 M IF ret

EX div

Hit case

Instruction fetch starts before second load becomes ready

Second load is prioritized over instruction fetch

Loading before fetching suits subsequent execution

) Progress in the pipeline influences the arbitration of code fetch and
data access

Reinhard Wilhelm Abstractable Pipelines August 13, 2015 10 / 22

computer science

saarland
universityTiming Anomaly

load ...

nop

load r1, ...

div ..., r1

ret

(load r1, 0)

(load, 0)

load H IF ret load r1 M EX div

load M load r1 M IF ret

EX div

Hit case

Instruction fetch starts before second load becomes ready

Second load is prioritized over instruction fetch

Loading before fetching suits subsequent execution

) Progress in the pipeline influences the arbitration of code fetch and
data access

Reinhard Wilhelm Abstractable Pipelines August 13, 2015 10 / 22

computer science

saarland
universityTiming Anomaly

load ...

nop

load r1, ...

div ..., r1

ret

(load r1, 0)

(load, 0)

load H IF ret load r1 M EX div

load M load r1 M IF ret

EX div

Miss case

Second load can catch up during first load missing the cache

Second load is prioritized over instruction fetch

Loading before fetching suits subsequent execution

) Progress in the pipeline influences the arbitration of code fetch and
data access

Reinhard Wilhelm Abstractable Pipelines August 13, 2015 10 / 22

Hit case:
•  Instruction fetch starts before second load becomes ready
•  Stalls second load, which misses the cache

Miss case:
•  Second load can catch up during first load missing the cache
•  Second load is prioritized over instruction fetch
•  Loading before fetching suits subsequent execution

Intuitive Reason:
Progress in the pipeline influences order of
instruction fetch and data access

Program:
Pipeline State:

IF
ID
EX
MEM
WB

28

Good News: Strictly In-Order Pipelines

Definition (Strictly In-Order):
We call a pipeline strictly in-order if each resource
processes the instructions in program order.

•  Enforce memory operations (instructions and
data) in-order (common memory as resource)

•  Block instruction fetch until no potential data
accesses in the pipeline

29

Strictly In-Order Pipelines: Properties

Theorem 1 (Monotonicity):
In the strictly in-order pipeline progress of an
instruction is monotone in the progress of other
instructions.

≤

In the blue state,
each instruction has
the same or more
progress than in the
red state.

∃

≤

∀

30

Strictly In-Order Pipelines: Properties

Theorem 2 (Timing Anomalies):
The strictly in-order pipeline is free of timing
anomalies.

local
best case

local
worst case

≤

...

≤
≤

by monotonicity

31

Multi-Core Timing Analysis

Execution time depends strongly on execution
context due to interference on shared resources

computer science

saarland
universityWhat does the execution time depend on?

1 The input, determining which path is taken through the program.
2 The state of the hardware platform:

I Due to caches, pipelines, speculation, etc.
3 Interferences from the environment:

I External interferences as seen from the analyzed task on shared
busses, caches, memory.

Complex
CPU

L1
Cache

Complex
CPU

L1
Cache

...
L2

Cache
Main

Memory

Jan Reineke Timing Analysis and Timing Predictability 11. Februar 2013 6 / 38

32

“Standard Approach” for Timing Analysis

Two-phase approach:
1.  Determine WCET (worst-case execution time)

bounds for each task on platform
2.  Perform response-time analysis

Simple interface between WCET analysis and
response-time analysis: WCET bounds

Still adequate in case of multi cores?

33

Three Approaches to Timing Analysis for Multi-
and Many-Cores

Precision

Complexity

2. Integrated

1. Murphy

3. Compositional

34

1. Murphy Approach

Maintain standard two-phase approach:
1.  Determine context-independent WCET bound
2.  Perform response-time analysis

 Radojkovic et al. (ACM TACO, 2012) on Intel Atom

and Intel Core 2 Quad:
 up to 14x slow-down due to interference
 on shared L2 cache and memory controller

à Results will be extremely pessimistic

35

2. Integrated Analysis Approach

Analyze entire task set at once in a combined
WCET and response-time analysis

à Infeasible even for the analysis of two

 co-running tasks

36

Three Approaches to Timing Analysis for Multi-
and Many-Cores

Precision

Complexity

Integrated

Murphy

Compositional

37

3. Compositional Approach

1. “WCET Analysis”: for each task:
a)  Compute WCET bound assuming no interference
b)  Compute maximal interference generated by task

on each shared resource

2. Perform extended response-time analysis

38

3. Compositional Approach:
Response-time Analysis [RTNS 15, DAC 16]

computer science

saarland
universityWhat does the execution time depend on?

1 The input, determining which path is taken through the program.
2 The state of the hardware platform:

I Due to caches, pipelines, speculation, etc.
3 Interferences from the environment:

I External interferences as seen from the analyzed task on shared
busses, caches, memory.

Complex
CPU

L1
Cache

Complex
CPU

L1
Cache

...
L2

Cache
Main

Memory

Jan Reineke Timing Analysis and Timing Predictability 11. Februar 2013 6 / 38Response time of a task = Execution time in isolation
 + Interference on its Core
 + Interference on Caches
 + Interference on Bus
 + Interference on Memory

39

3. Compositional Approach: Challenges

What are good interference characterizations?
à  Want precision and analysis efficiency

Approaches usually rely on timing compositionality.

40

Timing Compositionality: By Example computer science

saarland
universityMulti-Core Processors [Schranzhofer et al.]

Response Time of Task on Core 1

Core 1exec

max

1 Core 2 Core 3 Core 4

Shared Memoryµmax

1 · a

Shared BusB

1 Worst-case execution time without bus accesses: exec

max

1

2 Number of bus accesses in the worst case: µmax

1

3 Worst-case bus blocking time: B (depends on exec

max

i

and µmax

i

)

) R1 exec

max

1 + µmax

1 · a + B

Jan Reineke Timing Compositionality AVACS meets InvasIC 10 / 20

Timing Compositionality =
Ability to simply sum up timing contributions by different components

Implicitly or explicitly assumed by (almost) all approaches to timing
analysis for multi cores and cache-related preemption delays (CRPD).

41

Timing Compositionality of
Conventional In-order Pipeline

Maximal cost of an additional cache miss?

Intuitively: cache miss penalty

Unfortunately:
¢  Common case: less than cache miss penalty
¢  But worst case: ~ 2 times cache miss penalty
 - ongoing instruction fetch may block load
 - ongoing load may block instruction fetch

42

Strictly In-Order Pipelines: Properties

Theorem 3 (Timing Compositionality):
The strictly in-order pipeline admits „compositional
analysis with intuitive penalties.“

≤

local
best case

local
worst case

≤
≥after

„natural“
penalty

43

Conclusions

Timing analysis needs timing models;
models can be obtained by machine learning

Multicores require rethinking interface between
WCET analysis and response-time analysis

¢  Simple, in-order pipelines do not fulfill
assumptions of state-of-the-art analyses

¢  Strictly in-order pipeline is free of timing
anomalies and timing-compositional
à Component of future predictable multi-cores!?

Thank you for your attention!

Modeling

Analysis

Design

44

Some References
Gray-box Learning of Serial Compositions of Mealy Machines
A. Abel and J. Reineke. In NASA Formal Methods Symposium, 2016.

MIRROR: Symmetric Timing Analysis for Real-Time Tasks on Multicore Platforms with Shared Resources
W.-H. Huang, J.-J. Chen, and J. Reineke. In DAC, 2016.

A Generic and Compositional Framework for Multicore Response Time Analysis
S. Altmeyer, R.I. Davis, L.S. Indrusiak, C. Maiza, V. Nelis, and J. Reineke. In RTNS, 2015.

Toward Compact Abstractions for Processor Pipelines
S. Hahn, J. Reineke, and R. Wilhelm. In Correct System Design, 2015.

A Compiler Optimization to Increase the Efficiency of WCET Analysis
M. A. Maksoud and J. Reineke. In RTNS, 2014.

Architecture-Parametric Timing Analysis
J. Reineke and J. Doerfert. In RTAS, 2014.

Selfish-LRU: Preemption-Aware Caching for Predictability and Performance
J. Reineke, S. Altmeyer, D. Grund, S. Hahn, C. Maiza. In RTAS, 2014.

Towards Compositionality in Execution Time Analysis - Definition and Challenges
S. Hahn, J. Reineke, and R. Wilhelm. In CRTS, 2013.

Impact of Resource Sharing on Performance and Performance Prediction: A Survey
A. Abel, F. Benz, J. Doerfert, B. Dörr, S. Hahn, F. Haupenthal, M. Jacobs, A. H. Moin, J. Reineke, B. Schommer, and R.
Wilhelm. In CONCUR, 2013.

Measurement-based Modeling of the Cache Replacement Policy
A. Abel and J. Reineke. In RTAS, 2013.

A PRET Microarchitecture Implementation with Repeatable Timing and Competitive Performance
I. Liu, J. Reineke, D. Broman, M. Zimmer, and E.A. Lee. In ICCD, 2012.

PRET DRAM Controller: Bank Privatization for Predictability and Temporal Isolation
J. Reineke, I. Liu, H.D. Patel, S. Kim, and E.A. Lee. In CODES+ISSS, 2011.

