
The Automated-Reasoning Revolution: from
Theory to Practice and Back

Moshe Y. Vardi

Rice University

Joint work with Kuldeep S. Meel, Supratik Chakraborty, Daniel Fremont,
Rakesh Mistry, Sanjit Seshia.

Boolean Satisfiability

Boolean Satisfiability (SAT); Given a Boolean expression, using “and”
(∧) “or”, (∨) and “not” (¬), is there a satisfying solution (an assignment
of 0’s and 1’s to the variables that makes the expression equal 1)?

Example:

(¬x1 ∨ x2 ∨ x3) ∧ (¬x2 ∨ ¬x3 ∨ x4) ∧ (x3 ∨ x1 ∨ x4)

Solution: x1 = 0, x2 = 0, x3 = 1, x4 = 1

1

Complexity of Boolean Reasoning

History:

• William Stanley Jevons, 1835-1882: “I have given much attention,
therefore, to lessening both the manual and mental labour of the process,
and I shall describe several devices which may be adopted for saving trouble
and risk of mistake.”

• Ernst Schröder, 1841-1902: “Getting a handle on the consequences
of any premises, or at least the fastest method for obtaining these
consequences, seems to me to be one of the noblest, if not the ultimate
goal of mathematics and logic.”

• Cook, 1971, Levin, 1973: Boolean Satisfiability is NP-complete.

2

P vs. NP

• P : efficient discovery of solutions
• NP : efficient checking of solutions

The Big Question: Is P = NP or P 6= NP?

• Is checking really easier than discovering?

Intuitive Answer: Of course, checking is easier than discovering, so
P 6= NP !!!

• Metaphor: finding a needle in a haystack
• Metaphor: Sudoku
• Metaphor: mathematical proofs

Alas: We do not know how to prove that P 6= NP .

3

P = NP

S. Aaronson, MIT: “If P = NP , then the world would be a profoundly
different place than we usually assume it to be. There would be no special
value in ‘creative leaps,’ no fundamental gap between solving a problem and
recognizing the solution once it’s found. Everyone who could appreciate
a symphony would be Mozart; everyone who could follow a step-by-step
argument would be Gauss.”

Consequences:

• Can solve efficiently numerous important problems.
• RSA encryption is not safe.

Question: Is it really possible that P = NP?

Answer: Yes! It’d require discovering a very clever algorithm, but it
took 40 years to prove that LinearProgramming is in P .

4

Sharpening The Problem

NP -Complete Problems: hardest problems in NP

• Boolean Satisfiability is NP -complete! [Cook-Levin]

Corollary: P = NP if and only if Boolean Satisfiability is in P

There are thousands of NP -complete problems. To resolve the P = NP
question, it’d suffice to prove that one of them is or is not in P .

Convetional Wisdom: NP-complete problems are hard!

5

Algorithmic Boolean Reasoning: Early History

• Newell, Shaw, and Simon, 1955: “Logic Theorist”

• Davis and Putnam, 1958: “Computational Methods in The
Propositional calculus”, unpublished report to the NSA

• Davis and Putnam, JACM 1960: “A Computing procedure for
quantification theory”

• Davis, Logemman, and Loveland, CACM 1962: “A machine program
for theorem proving”

DPLL Method: Propositional Satisfiability Test

• Convert formula to conjunctive normal form (CNF)

• Backtracking search for satisfying truth assignment

• Unit-clause preference: If there is a clause p (resp., ¬p), assign p 1
(resp, 0).

6

Modern SAT Solving

CDCL = conflict-driven clause learning

• Backjumping

• Smart unit-clause preference

• Conflict-driven clause learning

• Smart decision heuristic (brainiac vs. speed demon)

• Randomized Restarts

Key Tools: GRASP, 1996; Chaff, 2001

Current capacity: millions of variables - wide industrial usage!

7

SAT Heuristic – Backjumping

Backtracking: go up one level in the search tree when both Boolean
values for a variable have been tested.

Backjumping [Stallman-Sussman, 1977]: jump back in the search tree,
if jump is safe – use highest node to jump to.

Key: Distinguish between

• Decision variable: Variable is that chosen and then assigned first c and
then 1− c.

• Implication variable: Assignment to variable is forced by a unit clause.

Implication Graph: directed acyclic graph describing the relationships
between decision variables and implication variables.

8

Smart Unit-Clause Preference

Boolean Constraint Propagation (BCP): propagating values forced by
unit clauses.

• Empirical Observation: BCP can consume up to 80% of SAT solving
time!

Requirement: identifying unit clauses

• Naive Method: associate a counter with each clause and update counter
appropriately, upon assigning and unassigning variables.

• Two-Literal Watching [Moskewicz-Madigan-Zhao-Zhang-Malik, 2001]:
“watch” two un-false literals in each unsatisfied clause – no overhead for
backjumping.

9

SAT Heuristic – Clause Learning

Conflict-Driven Clause Learning: If assignment 〈l1, . . . , ln〉 is bad, then
add clause ¬l1 ∨ . . . ∨ ¬ln to block it.

Marques-Silva&Sakallah, 1996: This would add very long clauses! Instead:

• Analyze implication graph for chain of reasoning that led to bad
assignment.

• Add a short clause to block said chain.
• The “learned” clause is a resolvent of prior clauses.

Consequence:

• Combine search with inference (resolution).
• Algorithm uses exponential space; “forgetting” heuristics required.

10

Smart Decision Heuristic

Crucial: Choosing decision variables wisely!

Dilemma: brainiac vs. speed demon

• Brainiac: chooses very wisely, to maximize BCP – decision-time overhead!
• Speed Demon: chooses very fast, to minimize decision time – many

decisions required!

VSIDS [Moskewicz-Madigan-Zhao-Zhang-Malik, 2001]: Variable State
Independent Decaying Sum – prioritize variables according to recent
participation on conflicts – compromise between Brainiac and Speed Demon.

11

Randomized Restarts

Randomize Restart [Gomes-Selman-Kautz, 1998]

• Stop search
• Reset all variables
• Restart search
• Keep learned clauses

Aggressive Restarting: restart every ∼50 backtracks.

12

S. A. Seshia 1

Some Experience with SAT Solving
Sanjit A. Seshia

Speed-up of 2012 solver over other solvers

1

10

100

1,000

Solver

S
p

e
e

d
-u

p
 (

lo
g

 s
c

a
le

)

Figure 1: SAT Solvers Performance
%labelfigure

13

Reflection on P vs. NP

Old Cliché “What is the difference between theory and practice? In theory,
they are not that different, but in practice, they are quite different.”

P vs. NP in practice:

• P=NP: Conceivably, NP-complete problems can be solved in polynomial
time, but the polynomial is n1,000 – impractical!

• P6=NP: Conceivably, NP-complete problems can be solved by nlog log log n

operations – practical!

Conclusion: No guarantee that solving P vs. NP would yield practical
benefits.

14

Are NP-Complete Problems Really Hard?

• When I was a graduate student, SAT was a “scary” problem, not to be
touched with a 10-foot pole.

• Indeed, there are SAT instances with a few hundred variables that cannot
be solved by any extant SAT solver.

• But today’s SAT solvers, which enjoy wide industrial usage, routinely
solve real-life SAT instances with millions of variables!

Conclusion: We need a richer and broader complexity theory, a theory that
would explain both the difficulty and the easiness of problems like SAT.

Question: Now that SAT is “easy” in practice, how can we leverage that?

15

Verification of HW/SW systems

HW/SW Industry: $0.75T per year!

Major Industrial Problem: Functional Verification – ensuring that
computing systems satisfy their intended functionality: Verification
consumes the majority of the development effort!

Two Major Approaches, both Computer Aided:

• Formal Verification: Constructing mathematical models of systems
under verification and analyzing them mathematically: ≤ 10% of verification
effort – CAV!

• Dynamic Verification: simulating systems under different testing
scenarios and checking the results: ≥ 90% of verification effort – not
CAV!

16

Dynamic Verification

• Dominant approach!

• Design is simulated with input test vectors.

• Test vectors represent different verification scenarios.

• Results compared to intended results.

• Challenge: Exceedingly large test space!

17

Motivating Example: HW FP Divider

z = x/y: x, y, z are 128-bit floating-point numbers

Question How do we verify that circuit works correctly?

• Try for all values of x and y?

• 2256 possibilities

• Sun will go nova before done! Not scalable!

18

Test Generation

Classical Approach: manual test generation - capture intuition about
problematic input areas

• Verifier can write about 20 test cases per day: not scalable!

Modern Approach: random-constrained test generation

• Verifier writes constraints describing problematic inputs areas (based
on designer intuition, past bug reports, etc.)

• Uses constraint solver to solve constraints, and uses solutions as test
inputs – rely on industrial-strength constraint solvers!

• Proposed by Lichtenstein+Malka+Aharon (IBM), 1994: de-facto
industry standard today!

19

Random Solutions

Major Question: How do we generate solutions randomly and
uniformly?

• Randomly: We should not reply on solver internals to chose input vectors;
we do not know where the errors are!

• Uniformly: We should not prefer one area of the solution space to
another; we do not know where the errors are!

Uniform Generation of SAT Solutions: Given a SAT formula, generate
solutions uniformly at random, while scaling to industrial-size problems.

20

Constrained Sampling: Applications

Many Applications:

• Constrained-random Test Generation: discussed above

• Personalized Learning: automated problem generation

• Search-Based Optimization: generate random points of the candidate
space

• Probabilistic Programming: Sample after conditioning

• . . .

21

Constrained Sampling – Prior Approaches, I

Theory:

• Jerrum+Valiant+Vazirani, 1986: Random generation of combinatorial
structures from a uniform distribution: uniform generation in random
polynomial time with a Σp

2 oracle.

• Bellare+Goldreich+Petrank, 2000: Uniform generation of NP -witnesses
using an NP -oracle – uniform generation in random polynomial time
with an NP oracle.

We implemented the BPG Algorithm: did not scale above 16 variables!

22

Constrained Sampling – Prior Work, II

Practice:

• BDD-based: Yuan-Aziz-Pixley-Albin, 2004: Simplifying Boolean
constraint solving for random simulation-vector generation

– Compute number of paths to 1 from each node, weight edges accordingly.

– Take a random walk on BDD from root to 1 according to weights.

– Scalability: hundreds of variables

• Heuristics approaches:

– Randomized solvers – good scalability, poor uniformity

– MCMC-based – good scalability, poor uniformity

23

Markov Chain Monte Carlo Methods

Basic Idea:

• Construct a Markov chain that has the desired distribution as its
stationary distribution.

• Take a random walk on the chain until stationary distribution is
achieved and then sample.

Shortcomings:

• Hard to construct Markov chain with uniform distribution over
solutions of a Boolean formula.

• Exponentially long time to reach stationary distribution.

24

Almost-Uniform Generation of Solutions

New Algorithm – UniGen: Chakraborty–Meel–V, CAV’13+DAC’14:

• Almost-uniform generation in randomized polynomial time algorithms
with a SAT oracle.

• Based on universal hashing.

• Uses an SMT solver.

• Scales to 100Ks of variables.

• Enables parallel generation of independent solutions after preprocessing.

25

Uniformity vs Almost-Uniformity

• Input formula: ϕ; Solution space: Sol(ϕ)

• Solution-space size: κ = |Sol(ϕ)|

• Uniform generation: for every assignment y: Prob[Output = y]=1/κ

• Almost-Uniform Generation: for every assignment y:
(1/κ)
(1+ε) ≤ Prob[Output = y] ≤ (1/κ)× (1 + ε)

26

The Basic Idea

1. Partition Sol(ϕ) into “roughly” equal small cells of appropriate size.

2. Choose a random cell.

3. Choose at random a solution in that cell.

You got random solution almost uniformly!

Question: How can we partition Sol(ϕ) into “roughly” equal small cells
without knowing the distribution of solutions?

Answer: Universal Hashing [Carter-Wegman 1979, Sipser 1983]

27

Universal Hashing

Hash function: maps {0, 1}n to {0, 1}m

• Random inputs: All cells are roughly equal (in expectation)

Universal family of hash functions: Choose hash function randomly from
family

• For arbitrary distribution on inputs: All cells are roughly equal (in
expectation)

28

Strong Universality

Universal Family: Each input is hashed uniformly, but different inputs
might not be hashed independently.

H(n, m, r): Family of r-universal hash functions mapping {0, 1}n to {0, 1}m

such that every r elements are mapped independently.

• Higher r: Stronger guarantee on range of sizes of cells

• r-wise universality: Polynomials of degree r − 1

29

Strong Universality

Key: Higher universality ⇒ higher complexity!

• BGP: n-universality ⇒ all cells are small ⇒ uniform generation

• UniGen: 3-universality ⇒ a random cell is small w.h.p ⇒ almost-uniform
generation

From tens of variables to 100Ks of variables!

30

XOR-Based 3-Universal Hashing

• Partition {0, 1}n into 2m cells.

• Variables: X1, X2, . . . Xn

• Pick every variable with probability 1/2, XOR them, and equate to 0/1
with probability 1/2.

– E.g.: X1 + X7 + . . . + X117 = 0 (splits solution space in half)

• m XOR equations ⇒ 2m cells

• Cell constraint: a conjunction of CNF and XOR clauses

31

SMT: Satisfiability Modulo Theory

SMT Solving: Solve Boolean combinations of constraints in an underlying
theory, e.g., linear constraints, combining SAT techniques and domain-
specific techniques.

• Tremendous progress since 2000!

CryptoMiniSAT: M. Soos, 2009

• Specialized for combinations of CNF and XORs

• Combine SAT solving with Gaussian elimination

32

UniGen Performance: Uniformity

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 160 180 200 220 240 260 280 300 320

#
 o

f
S
o
lu

ti
o
n
s

Count

US
UniGen

Uniformity Comparison: UniGen vs Uniform Sampler

33

UniGen Performance: Runtime

0.1	

1	

10	

100	

1000	

10000	

100000	

ca
se
47
	

ca
se
_3

_b
14

_3
	

ca
se
10

5	

ca
se
8	

ca
se
20

3	

ca
se
14

5	

ca
se
61

	

ca
se
9	

ca
se
15

	

ca
se
14

0	

ca
se
_2

_b
14

_1
	

ca
se
_3

_b
14

_1
	

sq
ua

rin
g1

4	

sq
ua

rin
g7
	

ca
se
_2

_p
tb
_1

	

ca
se
_1

_p
tb
_1

	

ca
se
_2

_b
14

_2
	

ca
se
_3

_b
14

_2
	

Time(s)	

Benchmarks	

UniGen	

XORSample'	

Runtime Comparison: UniGen vs XORSample’

34

From Independence to Almost Independence

Question: Each hash-value cell has many solutions, but we keep only
one. Why?

Answer: Because solutions in the same cell are not independent!

Question: Why do we need independent solutions?

Answer: We need independence to be able to multiply probabilities, to
increase confidence of hitting bugs.

Relaxing Independence: If we relax independence, we need more
solutions to reach confidence level, but we use fewer SAT calls!

Chakraborty-Fremont-Meel-Seshia-V, 2015: From 100Ks of variables to
millions of variables!

35

From Sampling to Counting

• Input formula: ϕ; Solution space: Sol(ϕ)

• #SAT Problem: Compute |Sol(ϕ)|

– ϕ = (p ∨ q)

– Sol(ϕ) = {(0, 1), (1, 0), (1, 1)}

– |Sol(ϕ)| = 3

Fact: #SAT is complete for #P – the class of counting problems for
decision problems in NP [Valiant, 1979].

36

Constrained Counting

A wide range of applications!

• Coverage in random-constrained verification

• Probabilistic inference

• Planning with uncertainty

• . . .

But: #SAT is really a hard problem! In practice, quite harder than SAT .

37

Approximate Counting

Probably Approximately Correct (PAC):

• Formula: ϕ, Tolerance: ε, Confidence: 0 < δ < 1

• |Sol(ϕ)| = κ

• Prob[κ
(1+ε) ≤ Count ≤ κ× (1 + ε) ≥ δ

• Introduced in [Stockmeyer, 1983]

• [Jerrum+Sinclair+Valiant, 1989]: BPPNP

• No implementation so far.

38

From Sampling to Counting

ApproxMC: [Chakraborty+Meel+V., 2013]

• Use m random XOR clauses to select at random an appropriately small
cell.

• Count number of solutions in cell and multiply by 2m to obtain estimate
of |Sol(ϕ)|.

• Iterate until desired confidence is achieved.

ApproxMC runs in time polynomial in |ϕ|, ε−1, and log(1 − δ)−1, relative
to SAT oracle.

39

ApproxMC Performance: Accuracy

1.0E+00	

3.2E+01	

1.0E+03	

3.3E+04	

1.0E+06	

3.4E+07	

1.1E+09	

3.4E+10	

1.1E+12	

3.5E+13	

1.1E+15	

3.6E+16	

0	
 10	
 20	
 30	
 40	
 50	
 60	
 70	
 80	
 90	

Co
un

t	

Benchmarks	

Cachet*1.75	

Cachet/1.75	

ApproxMC	

Accuracy: ApproxMC vs Cachet (exact counter)

40

ApproxMC Performance: Runtime

0	

10000	

20000	

30000	

40000	

50000	

60000	

70000	

0	
 10	
 20	
 30	
 40	
 50	
 60	
 70	
 80	
 90	
 100	
 110	
 120	
 130	
 140	
 150	
 160	
 170	
 180	
 190	

Ti
m
e	

(s
ec

on
ds

)	

Benchmarks	

ApproxMC	

Cachet	

Runtime Comparison: ApproxMC vs Cachet’

41

Scaling Performance – from Bits to Bit Vectors

Observation: Benchmarks are often word-level.

[Chistikov-Dimitrova-Majumdar, 2015]: Lift ApproxMC to word-level
benchmarks, via bit blasting.

Why Bit Blasting? Because of XOR-based hash function.

Lifting Hashing [Chakraborty+Meel+Mistry+V., 2016]:

• XOR constraints are linear equations over the finite field F2.

• We can lift to Fp – for prime p – by using linear equations.

42

Word-Level Approximate Counting

SMTApproxMC: Word-level approximate constrained counter, built on top
of Boolector [Chakraborty+Meel+Mistry+V., 2016]

Empirical Evaluation:

• Usually outperforms CDM.

• Underperforms CDM in benchmarks with large variety of bitvector
widths.

To be done: Enhancing Boolector with Gaussian elimination.

43

The Core of UniGen and ApproxMC

Before we can sample cells, we need to know how many cells are needed,
e.g., how many hash bits are needed.

• For cells to be small in expectation, number of cells should be
proposortional to size of solution space.

• But we do not know the size of the solution space!!!

• Run a search to find appropriate number of hash bits for cell to be
small.

44

Improving the Core

[Chakraborty-Meel-V., 2016]:

• Old Thinking: Search probes must be independent, so search must
be sequential.

• New Thinking: Search probes can be weakly independent, so search
can be logarithmic!

ApproxMC2 [Chakraborty+Meel+V., 2016]:

• Uses logarithmic rather than sequential search in core algorithm.

• About 10X performance improvement over ApproxMC.

• Applicable to other hasning-based algorithms.

45

In Conclusion

• The improvement in the performance of SAT solvers over the past 20
years is revolutionary!

– Better marketing: Deep Solving

• SAT solving is an enabler, e.g., approximate sampling and counting

• When you have a big hammer, look for nails!!!

– Example: Statistical analysis of systems

• Scalability is an ongoing challenge!

46

