

Cichon's Conjecture on the Slow Growing Hierarchy

The unexpected power of a pointwise hierarchy

Georg Moser

https://tcs-informatik.uibk.ac.at/

Summary of Last Lecture

Concepts and Theorems

- terms and positions
- term rewrite systems
- (universal) termination of TRSs
- simplification orders
 - LPO
 - MPO
 - KBO
- well-founded monotone algebras

Theorem

- $>_{\mathcal{A}}$ is reduction order for every WFMA $(\mathcal{A},>)$
- TRS is terminating iff compatible with WFMA

Simple Termination (signatures are finite)

Definitions

innsbruck

- binary relation > on terms is simplification order if ۲
 - closed under contexts
 - 2 closed under substitutions
 - 3 proper order
 - 4 subterm property $u[t]_p > t$ when $p \neq \epsilon$
- TRS is simply terminating if compatible with simplification order
- TRS \mathcal{E} mb consists of all rewrite rules

$$f(x_1,\ldots,x_n) \rightarrow x_i$$

• $\triangleright_{\mathsf{emb}} = \rightarrow_{\mathcal{E}\mathsf{mb}}^*$ embedding

universität Cichon's Conjecture. Proof and Computation, 10th to 16th September 2023

Theorem

simplification orders are well-founded

Proof Idea.

proof is based on Kruskal's Tree Theorem

Theorem

simply terminating TRSs are terminating

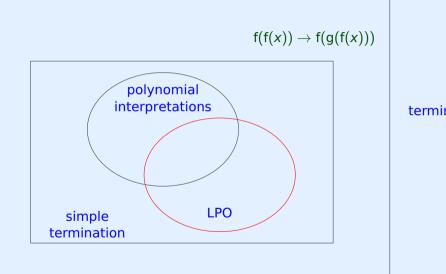
Lemma

TRS \mathcal{R} is simply terminating iff $\mathcal{R} \cup \mathcal{E}$ mb is terminating

Example

$$f(f(x)) \rightarrow f(g(f(x))) \rightarrow_{\mathcal{E}\mathsf{mb}} f(f(x))$$

Picturing Simple Termination



termination

A Brief History of Termination Methods

- interpretation method
- polynomial interpretations
- lexicographic path order

- Knuth-Bendix order
- recursive decomposition order

- Turing1949Lankford1975Ben Cherifa, Lescanne1987Schütte1960Dershowitz1982Kamin, Lévy1980
 - Knuth, Bendix 1970
 - Dick, Kalmus, Martin 1990

Jouannaud, Lescanne, Reinig 1982

Remark

traditional termination orders yield simple termination; modern techniques surpass this significantly

The Slow-Growing Hierarchy and Friends

Content

- derivational complexity
- complexities induced by simplification order
- complexities induced modern termination techniques
- Hydra Battle by Kirby and Paris
- subrecursive hierarchies

Definition

the derivation height of a term t wrt to T and \rightarrow

$$\begin{array}{l} \mathsf{dh}(t, \rightarrow) = \max\{n \mid \exists u \ t \rightarrow^{n} u\} \\ \mathsf{dh}(n, \mathbf{T}, \rightarrow) = \max\{\mathsf{dh}(t, \rightarrow) \mid \exists t \in \mathbf{T} \text{ and } |t| \leqslant n\} \end{array}$$

Definition (Derivational Complexity)

the derivational complexity with respect to a TRS $\ensuremath{\mathcal{R}}$

 $\mathsf{dc}_{\mathcal{R}}(n) = \mathsf{dh}(n, \text{"all terms"}, \rightarrow_{\mathcal{R}})$

Example

consider TRS \mathcal{R}_1

 $\operatorname{ack}(0,y) o \mathsf{S}(y) \qquad \operatorname{ack}(\mathsf{S}(x),\mathsf{S}(y)) o \operatorname{ack}(x,\operatorname{ack}(\mathsf{S}(x),y))$ $\operatorname{ack}(\mathsf{S}(x),0) o \operatorname{ack}(x,\mathsf{S}(0))$

 $dc_{\mathcal{R}_1}$ majorises every primitive recursive function

universität

How To Analyse Complexity

$$t_1 \rightarrow_{\mathcal{R}} t_2 \rightarrow_{\mathcal{R}} t_3 \rightarrow_{\mathcal{R}} \ldots \rightarrow_{\mathcal{R}} t_n$$

consider

- **1** \exists termination technique such that
- 2 termination of \mathcal{R} is certified

Fact

termination techniques can be used to measure the derivation height

Example

polynomial interpretations induce double exponential derivational complexity

D. Hofbauer and C. Lautemann.

Termination Proofs and the Length of Derivations.

In *Proc. 3rd RTA*, pages 167–177, 1989.

Results

- introduction of derivation height, derivational complexity
- derivational complexity as measure of a termination technique

Theorem

polynomial interpretations induce double-exponential derivational complexity

Lemma 1

 $\forall \ \mathcal{R} \text{ terminating via a polynomial interpretation} \\ \exists \ c \in \mathbb{R}, \ c > 0 \ \forall \text{ terms } s \text{: } \mathsf{dh}(s, \rightarrow_{\mathcal{R}}) \leqslant 2^{2^{c \cdot |s|}} \end{cases}$

Lemma 2

 $\exists \mathcal{R}$ terminating via a polynomial interpretation $\exists c \in \mathbb{R}, c > 0$ for infinitely many terms t: $dh(t, \rightarrow_{\mathcal{R}}) \ge 2^{2^{c \cdot |t|}}$

Proof of Lemma 2

consider \mathcal{R}_3 :

$$egin{array}{lll} x+0
ightarrow x & \mathsf{d}(0)
ightarrow 0 & \mathsf{d}(\mathsf{S}(x))
ightarrow \mathsf{S}(\mathsf{S}(\mathsf{d}(x))) \ x+\mathsf{S}(y)
ightarrow \mathsf{S}(x+y) & \mathsf{q}(0)
ightarrow 0 & \mathsf{q}(\mathsf{S}(x))
ightarrow \mathsf{q}(x) + \mathsf{S}(\mathsf{d}(x)) \end{array}$$

together with the polynomial interpretation ${\cal A}$

$$0_{\mathcal{A}} = 2 \qquad S_{\mathcal{A}}(n) = n + 1 \qquad n + {}_{\mathcal{A}} m = n + 2m$$
$$d_{\mathcal{A}}(n) = 3n \qquad q_{\mathcal{A}}(n) = n^{3}$$

- S defines the successor function
- d defines the doubling function, i.e., $d(S^n(0)) \xrightarrow{*} S^{2n}(0)$
- q defines the square function, i.e., $q(S^n(0)) \xrightarrow{*} S^{n^2}(0)$

Proof (cont'd)

from this we get:

$$\boldsymbol{t_m} = \boldsymbol{\mathsf{q}}^{m+1}(\boldsymbol{\mathsf{S}}^2(0)) \xrightarrow{*} \boldsymbol{\mathsf{q}}(\boldsymbol{\mathsf{S}}^{\boldsymbol{\mathsf{2}}^{2^m}}(0)) \xrightarrow{\geq \boldsymbol{\mathsf{2}}^{2^m}} \boldsymbol{\mathsf{S}}^{\boldsymbol{\mathsf{2}}^{2^{m+1}}}(0)$$

we conclude, for all $m \ge 1$

$$\mathsf{dh}(t_m,\to_{\mathcal{R}_3})\geqslant 2^{2^m}=2^{2^{|t_m|-4}}\geqslant 2^{2^{c\cdot|t_m|}}$$

where $c \leq \frac{1}{5}$

Question 1

Is \mathcal{R}_1 , ie. the TRS implementing the Ackermann function, polynomially terminating?

Answer

iniversitāt

innsbruck

- the TRS \mathcal{R}_1 implements the Ackermann function, that grows much faster than double-exponentially
- hence, the answer is (very much) no!

Cichon's Conjecture, Proof and Computation, 10th to 16th September 2023

Reduction Orders Induce Derivational Complexities

Theorem

the **multiset path order** induces primitive recursive derivational complexity; this bound is tight

Theorem

the **lexicographic path orders** induce multiple recursive derivational complexity; this bound is tight¹

D. Hofbauer.

Termination proofs by multiset path orderings imply primitive recursive derivation lengths. TCS, 105:129–140, 1992.

A. Weiermann.

Complexity bounds for some finite forms of Kruskal's theorem. JSC, 18(5):463–488, November 1994.

¹The multiple recursive functions are based on Rozsa Peter's generalisations of the Ackermann function.

Theorem

the Knuth-Bendix orders induce derivational complexities that are contained in the Ackermann function, more precisely, $dc_{\mathcal{R}}(n) \in Ack(O(n), 0)$, whenever $\mathcal{R} \subseteq >_{kbo}$; this bound is tight

Remark

- derivational complexity of modern termination techniques analysed, including modular techniques (like the dependency pair method) or methods not based on reduction orders (like match-bound techniques)
- for (almost) all automated techniques, the complexity induces is bounded by a multiple recursive function

I. Lepper.

Derivation lengths and order types of Knuth-Bendix orders. TCS, 269(1-2):433-450, 2001.

A. Schnabl.

University of Innsbruck. PhD thesis, Derivational Complexity Analysis revisited, 2012.

Back to Proof Theory

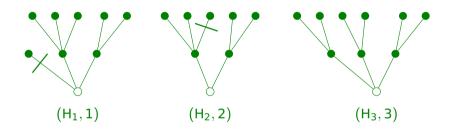
The Hydra Battle by Kirby and Paris

- the beast is a finite tree, each leaf corresponds to a head; Hercules chops off heads of the Hydra, but the Hydra regrows:
 - if the cut head has a pre-predecessor, then the remaining subtree issued from this node is multiplied by the stage of the game.
 - otherwise the Hydra ignores the loss.
- **2** Hercules wins, when the beast is reduced to the empty tree.

Theorem

termination of the battle is independent: PA eq the battle terminates

Example



Definition

a strategy is a mapping determining which head Hercules chops off at each stage

Theorem (Kirby, Paris)

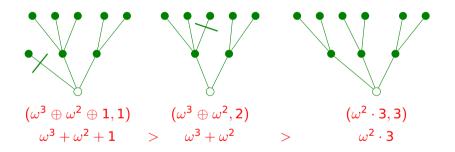
Every strategy is a winning strategy.

Proof.

In proof, associate with each Hydra an ordinal $< \epsilon_0$:

- To each leaf assign **0**.
- To each other node v assign $\omega^{\alpha_1} \oplus \cdots \oplus \omega^{\alpha_n}$, if α_i are the ordinals assigned to the successors of v.
- The ordinal representing the Hydra, is the ordinal assigned to the root.
- \oplus denotes the natural sum.

Example



The Standard Hydra Battle

- define a specific recursive strategy
- associate with $\alpha \in$ Cantor Normal Form, $\alpha_n \in$ Cantor Normal Form:

$$\alpha_n = \begin{cases} \mathbf{0} & \text{if } \alpha = \mathbf{0} \\ \beta & \text{if } \alpha = \beta + \mathbf{1} \\ \beta + \omega^{\gamma} \cdot \mathbf{n} & \text{if } \alpha = \beta + \omega^{\gamma+1} \\ \beta + \omega^{\gamma_n} & \text{if } \alpha = \beta + \omega^{\gamma} \text{ and } \gamma \in \text{Lim} \end{cases}$$

Definition (The Standard Hydra Battle)

a Hydra is an ordinal in CNF; the Hydra battle is a sequence of configurations (α, n) :

$$(\alpha, n) \implies (\alpha_n, n+1)$$

one step

Subrecursive Hierarchies

Definition

similar to the (standard) Hydra battle, we define the family of fundamental sequences $\lambda[x]_{x \in \mathbb{N}}$ as follows (λ limit ordinal):

$$\lambda[\mathbf{x}] = \begin{cases} \mathbf{x} + \mathbf{1} & \text{if } \lambda = \omega \\ \beta + \omega^{\alpha} \cdot (\mathbf{x} + \mathbf{1}) & \text{if } \lambda = \beta + \omega^{\alpha + 1} \\ \beta + \omega^{\alpha[\mathbf{x}]} & \text{if } \lambda = \beta + \omega^{\alpha}, \alpha \text{ limit} \end{cases}$$

NB: sup{ $\lambda[x] \mid x \in \mathbb{N}$ } = λ

Definition

the Hardy functions $(H_{\alpha})_{\alpha \in \mathcal{O}}$ are defined as follows:

 $H_0(x) = x$ $H_{\alpha+1}(x) = H_{\alpha}(x+1)$ $H_{\lambda}(x) = H_{\lambda[x]}(x)$ (λ limit)

- the length of the (standard) Hydra battle is (almost) directly expressible via the Hardy function
- as observed by Lepper: "Hydra" and "Hardy" are anagrams ©

Definition

the family of slow-growing functions $(G_{\alpha})_{\alpha \in \mathcal{O}}$ is defined as follows:

$$\mathsf{G}_0(x) = 0$$
 $\mathsf{G}_{\alpha+1}(x) = \mathsf{G}_{\alpha}(x) + 1$ $\mathsf{G}_{\lambda}(x) = \mathsf{G}_{\lambda[x]}(x)$ (λ limit)

Example

$${
m G}_{\omega}(x)=x+1 \qquad {
m G}_{\omega^{\omega^{\omega}}}(x)=(x+1)^{x+1^{x+1}} \qquad {
m G}_{\omega\cdot 2}(10)=(10+1)\cdot 2=22$$

the families $(G_{\alpha})_{\alpha \in \mathcal{O}}$, $(H_{\alpha})_{\alpha \in \mathcal{O}}$ form proper hierarchies, that is, for $\alpha > \beta$:

 $\exists c \text{ such that } \forall x \ge c : \mathsf{G}_{\alpha}(x) > \mathsf{G}_{\beta}(x), \mathsf{H}_{\alpha}(x) > \mathsf{H}_{\beta}(x),$

Example

$$\begin{array}{ll} \forall x \geqslant 1 & \quad \mathsf{G}_{\omega^{\omega}}(x) = (x+1)^{x+1} > (x+1) = \mathsf{G}_{\omega}(x) \\ \forall x \geqslant 1 & \quad \mathsf{G}_{\omega}(x) = x+1 \not \geqslant y = \mathsf{G}_{y}(x) & \text{whenever } y > x \end{array}$$

Theorem

Simplification orders induce functions elementary in H_{Λ} , where Λ denotes the "small Veblen ordinal" (sometimes denoted as $\theta(\Omega^{\omega})$, where Ω stands either for the first uncountable ordinal); note that $\Lambda \gg \epsilon_0$.

I. Lepper. Simply terminating rewrite systems with long derivations. Arch. Math. Logic, 43:1–18, 2004.

Further Reading

G. Bonfante, A. Cichon, J. Marion, and H. Touzet.

Algorithms with Polynomial Interpretation Termination Proof. *JFP*, 11(1):33–53, 2001.

N. Hirokawa and A. Middeldorp.

Hydra battles and AC termination.

In Proc. 8th FSCD, volume 260 of LIPIcs, pages 12:1–12:16, 2023.

D. Hofbauer and C. Lautemann.

Termination proofs and the length of derivations.

In Proc. 3rd RTA, volume 355 of LNCS, pages 167–177, 1989.

D. Hofbauer.

Termination proofs by multiset path orderings imply primitive recursive derivation lengths. <u>TCS</u>, 105:129–140, 1992.

D. Hofbauer.

Termination proofs and derivation lengths in term rewriting systems.

PhD thesis, Technical University of Berlin, 1992.

I. Lepper.

Derivation lengths and order types of Knuth-Bendix orders. TCS, 269(1-2):433–450, 2001.

<u>ا</u> ا.

I. Lepper. Simply terminating rewrite systems with long derivations.

Arch. Math. Log., 43(1):1–18, 2004.

J.-Y. Marion.

Analysing the Implicit Complexity of Programs. *IC*, 183:2–18, 2003.

A. Schnabl.

University of Innsbruck.

PhD thesis, Derivational Complexity Analysis revisited, 2012.

H. Touzet.

A complex example of a simplifying rewrite system.

In Proc. 25th ICALP, volume 1443, pages 507–517, 1998.

H. Touzet.

Encoding the hydra battle as a rewrite system.

In Proc. 23rd MFCS, volume 1450, pages 267–276, 1998.

A. Weiermann.

Termination proofs for term rewriting systems with lexicographic path ordering imply multiply recursive derivation lengths.

TCS, 139:355–362, 1995.

- H. Zankl, S. Winkler, and A. Middeldorp.

Beyond polynomials and peano arithmetic - automation of elementary and ordinal interpretations. J. Symb. Comput., 69:129–158, 2015.

Thank You for Your Attention!