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Summary of Last Lecture



Concepts and Theorems

• derivational complexity

• reduction orders induce derivational complexities

• Hydra battle and it’s independence

• subrecursive hierarchies

Theorem

the lexicographic path orders induce multiple recursive derivational complexity; this
bound is tight

Theorem

the Knuth-Bendix orders induce derivational complexities that are contained in the
Ackermann function, more precisely, dcR(n) ∈ Ack(O(n),0), whenever R ⊆ >kbo; this
bound is tight
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Cichon’s Conjecture and Counterexample



Content

• Girard’s hierarchy comparison theorem

• Cichon’s conjecture and it’s counterexample

• Buchholz’s proof of Weiermann’s result

• What makes a pointwise hierarchy slow growing?

• Hydra battle in rewriting

• Wrap Up
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Girard’s Hierarchy Comparison Theorem

recall that (Gα)α∈O is defined as follows:

G0(x) = 0 Gα+1(x) = Gα(x) + 1 Gλ(x) = Gλ[x](x) (λ limit)

and that the Hardy functions (Hα)α∈O are defined as follows:

H0(x) = x Hα+1(x) = Hα(x + 1) Hλ(x) = Hλ[x](x) (λ limit)

Theorem (Girard, Fairtlough and Wainer)

Let E(·) denote closure under elementary functions, then we have⋃
α<"Howard-Bachmann ordinal"

E(Gα) ≈
⋃
α<ϵ0

E(Hα)

NB.
⋃

α<ϵ0
E(Hα) characterises the provable recursive functions of Peano Arithmetic
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Cichon’s Conjecture
The derivational complexity induced by any termination order of order type α
is bounded by the slow-growing hierarchy indexed by α

Example

• consider KBO and the derivational complexity induced

• the order type of KBO is ωω

• on the other hand dcR(n) ∈ Ack(O(n),0), whenever R ⊆ >kbo and the bound is
tight

• recall that Gωω(x) = (x + 1)x+1

D. Hofbauer.

Termination proofs and derivation lengths in term rewriting systems. PhD thesis, Technical
University of Berlin, 1992.

I. Lepper.

Derivation lengths and order types of Knuth-Bendix orders. TCS, 269(1-2):433–450, 2001.
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A. Cichon.
Termination orderings and complexity characterizations.
In Proof Theory. Cambridge University Press, 1993.

Theorem

The derivational complexity induced by MPO and LPO is bounded by the slow-growing
hierarchy indexed by α.

Proof.

Hofbauer and Weiermann’s results, in conjunction with the Hierarchy comparison
theorem

PRIMREC =
⋃

α<φ(ω,0)

E(Gα) MREC =
⋃
α<Λ

E(Gα)

NB: Cichon’s proof is (unrepairable) wrong
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Buchholz’s Alternative Proof
The case of LPO

let F be finite and > a precedence on F

Definition

by A(≻, s, t) we denote the following proposition: s = f(s1, . . . , sn) and either

1 ∃ i si ≻ t or si = t,

2 t = g(t1, . . . , tm) and f > g and ∀ j s ≻ tj, or

3 t = f(t1, . . . , tn) and ∃ i (i) ∀ j ∈ [1, i − 1], sj = tj, (ii) si ≻ ti and (iii) ∀ j > i s ≻ tj

Lemma

the lexicographic path order >lpo is the least binary relation ≻, st. for all s, t ∈ T (F ,V),
A(≻, s, t) → s ≻ t
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Well-foundedness of LPO

we write ≻ as abbreviation for >lpo; let W denote the accessible part of (T (F ,V),≺)

W :=
⋂

{X ⊆ T (F ,V) | ∀t (∀s ≺ t (s ∈ X) → t ∈ X)}

Lemma

(W1) ∀t (∀s ≺ t (s ∈ W) ↔ t ∈ W)

(W2) ∀t ∈ W (∀s ≺ t F(s) → F(t)) → ∀t ∈ W F(t), for each (predicate) formula F

Lemma

∀t1, . . . , tn ∈ W
(
∀s1, . . . , sn ∈ W ((s1, . . . , sn) ≺lex (t1, . . . , tn) → G(s1, . . . , sn)) →

→ G(t1, . . . , tn))
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Lemma

for all t1, . . . , tn ∈ W, g ∈ F , we have g(t1, . . . , tn) ∈ W

Proof.

by induction on the (finite) precedence >, using the previous lemmas

• let t1, . . . , tn ∈ W and
∀s1, . . . , sn ∈ W (s1, . . . , sn) ≺lex (t1, . . . , tn) → g(s1, . . . , sn) ∈ W

• by side-induction on s, we prove s ≺ g(t1, . . . , tn) implies s ∈ W
1 suppose s ⪯ tj; then s ∈ W as tj ∈ W by (W1)
2 suppose s = f(s1, . . . , sm)), f < g and for all i, si ≺ g(t1, . . . , tn); then by SIH si ∈ W

and by MIH s ∈ W
3 finally, if s = g(s1, . . . , sn) then (s1, . . . , sn) ≺lex (t1, . . . , tn) and by SIH we have si ∈ W;

thus by the assumption above s ∈ W

• in sum by (W1), we have g(t1, . . . , tn) ∈ W
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Lemma

for all t ∈ T (F ,V), t ∈ W

Proof.

by induction on the (finite) precedence >

Corollary

there is no infinite ≺-decending sequence

Proof.

• by (W2) we conclude for each t ∈ W: there exists no infinite ≺-descending
sequence

• due to the lemma, for all t ∈ T (F ,V), t ∈ W
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Proof Theoretic Analysis

If ≺ is a primitive recursive relation on T (F ,V) such that Π0
2-IA proves ∀s, t (s ≺

t → A(≻, s, t)) and if W is a Σ0
1-set st. Π0

2-IA proves (W1) and (W2) for all Π0
2-

formulas F(t), then the well-foundness proof above can be formalised in Π0
2-IA,

and thus Π0
2-IA proves ∀t (t ∈ W).

let depth(t) denote the depth of term t

Definition

we define approximations of >lpo; that is, s ≺k t holds, if

• A(≺k, s, t) and

• depth(s) ⩽ k + depth(t)

using a standard Gödelisation of terms, we see that ∀s ≺k t is a bounded quantifier

Cichon’s Conjecture, Proof and Computation, 10th to 16th September 2023 10



k-derivations

Definition

t ∈ (t0, . . . , tn−1) :⇐⇒ ∃i < n (t = ti)

Dk := {(t0, . . . , tl) | ∀j ⩽ l ∀s ≺k tj (s ∈ (t0, . . . , tl))}
Wk := {t ∈ T (F ,V) | ∃d (d ∈ Dk ∧ t ∈ d)}

the elements of Dk are call k-derivations and note that the Wk are Σ0
1-sets

Lemma

Π0
2-IA proves the following

(Wk1) ∀t (∀s ≺k t (s ∈ Wk) ↔ t ∈ Wk)

(Wk2) ∀t ∈ Wk (∀s ≺k t F(s) → F(t)) → ∀t ∈ Wk F(t), for each Π0
2 formula F
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Minaturisation of Well-foundness Proof

Theorem

• Π0
2-IA proves

∀t ∈ T (F ,V) (t ∈ Wk) that is ∀t ∈ T (F ,V) ∃d(d ∈ Dk ∧ t ∈ d)

• the length of any ≺k-decending chain is bounded by a multiple-recursive function

Proof.

• for the first claim, we note that the Wk are Σ0
1-sets and follow the recipe of the

(original) well-foundedness proof

• for the second, observe that the provable recursive functions of Π0
2-IA are the

multiple-recursive functions

• the latter is orginally due to Parsons, a modern treatment can be found in
Fairtlough and Wainer’s handbook article
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Derivational Complexity Induced
Lemma

• if s >lpo t, then sσ ≻depth(t) tσ for every substitution σ

• let C[·] denote a (term) context, then s ≻k t implies C[s] ≻k C[t]

Proof.

we only prove the first claim; suppose s >lpo t; then by induction on >lpo on first
proves that

depth(sσ) + depth(t) ⩾ depth(tσ)

and second that A(≺depth(t), s, t)

let R be finite TRS such that R ⊆ >lpo and let k := max{depth(r) | l → r ∈ R}

Corollary

if s →R t then s ≻k t
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Buchholz’ proof

let R be a finite TRS and R ⊆ >lpo

t1 ≻k t2 ≻k t3 ≻k · · · ≻k tn

what happens, if we directly employ interpretations into ordinals and collapse with the
slow-growing hierarchy

Cichon’s claim

Gotyp(t1)(?) > Gotyp(t2)(?) > Gotyp(t3)(?) > · · · > Gotyp(tn)(?)

Remarks

• the collapse only works as intended, if we decend along the a fundamental
sequence

• the “slow-growing” hierarchy may be fast-growing!
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What Makes a Pointwise Hierarchy Slow Growing?

let’s refer to (Gα)α∈O as the pointwise hierarchy

Theorem

the pointwise hierarchy is slow growing, when the (underlying) fundamental sequence
is defined as

λ[x] =


ωα + λ′[x] if λ = ωα + λ′

ωβ · 2x if λ = ωβ+1

ωλ′[2x] if λ = ωλ′

where ωα + λ′ > λ′, λ′ a limit ordinal

A. Weiermann.

What makes a (pointwise) hierarchy slow growing?

In Sets and Proofs, Invited Papers from the Logic Colloquium 97, page 403–423. 1999.
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Theorem

the pointwise hierarchy is fast growing, when the (underlying) fundamental sequence
is defined as

λ[x] =


ωα + λ′[x + 1] if λ = ωα + λ′

ωβ · (x + 1) if λ = ωβ+1

ωλ′[x] if λ = ωλ′

where ωα + λ′ > λ′, λ′ a limit ordinal

A. Weiermann.

Sometimes slow growing is fast growing.

Ann. Pure Appl. Log., 90(1-3):91–99, 1997.

T. Arai.

Variations on a theme by Weiermann.

J. Symb. Log., 63(3):897–925, 1998.
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Hydra Battle in Rewriting

Example (Dershowitz and Jouannaud)

h(e(x), y) → h(d(x, y), s(y)) (α,n) =⇒ (αn,n + 1)

d(g(g(0, x), y),0) → e(y) standard Hydra battle

d(g(0, x), y) → e(x)

d(g(x, y), z) → g(d(x, z), e(y))

d(g(g(0, x), y), s(z)) → g(e(x),d(g(g(0, x), y), z))

g(e(x), e(y)) → e(g(x, y)) auxiliary rule

Remark

the given system constitutes the corrected version by Dershowitz; the orginal system
by Dershowitz and Jouannaud does not reflect the standard Hydra battle
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RTALooP # 23

Must any termination ordering used for proving termination of the Battle of
Hydra and Hercules-system have the Howard[-Bachmann] ordinal as its order
type?1

NB. The conjecture follow’s from Cichon’s conjecture in conjunction with the Hierarchy
comparision theorem

Answer

• No; more precisely, it is relative straightforward to design a reduction order of
order type ϵ0 that proves termination of Dershowitz’s corrected system

• a more involved construction is necessary to handle the original system

GM.
The Hydra battle and Cichon’s principle.
AAECC, 20(2):133–158, 2009.

1http://www.win.tue.nl/rtaloop/.
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Wrap Up

1 as mentioned, Cichon’s conjecture links
• logical complexities of a termination proof and
• computational complexities of a given program

2 connection is (a lot more) subtle than envisioned; developed evidence suggest
that “slow-growing” is a misnomer, “pointwise” is more apt

3 technically, applicability hinges on
• the definition of the (underlying) fundamental sequences
• mapping the given reduction order ≻ to a descend along these fundamental

sequences

NB. in practise, methodologies for cost analysis of programs are only loosely based on
termination techniques; eg. polynomial (or even sublinear) bounds resource bounds
forbid arguing “in the large”
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Thank You for Your Attention!
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