
Introduction Beluga:Design and implementation

Mechanizing Meta-Theory in Beluga

Brigitte Pientka

School of Computer Science
McGill University
Montreal, Canada

B. Pientka Mechanizing Meta-Theory in Beluga 1 / 35

Introduction Beluga:Design and implementation

Mechanizing formal systems and proofs: How and Why?

• Formal systems (given via axioms and inference rules) play an important
role when designing languages and more generally ensure that
software are reliable, safe, and trustworthy.

• Proofs (that a given property is satisfied) are becoming pervasive and an
integral part of certified software. (see: CompCert, DeepSpec,
RustBelt, Sel4, Cogent)

Program
(in Assembler, C,

ML, Java, Rust, ...)

Properties:

– Memory/Type Safety: Prog. doesn’t crash

– Contextual Equivalence: Two programs are
indistinguishable in any valid program context

– Bisimulation: Two systems behave the same

Meta-Theory

B. Pientka Mechanizing Meta-Theory in Beluga 2 / 35

Introduction Beluga:Design and implementation

Mechanizing formal systems and proofs: How and Why?

• Formal systems (given via axioms and inference rules) play an important
role when designing languages and more generally ensure that
software are reliable, safe, and trustworthy.

• Proofs (that a given property is satisfied) are becoming pervasive and an
integral part of certified software. (see: CompCert, DeepSpec,
RustBelt, Sel4, Cogent)

Program
(in Assembler, C,

ML, Java, Rust, ...)

Properties:

– Memory/Type Safety: Prog. doesn’t crash

– Contextual Equivalence: Two programs are
indistinguishable in any valid program context

– Bisimulation: Two systems behave the same

Meta-Theory

B. Pientka Mechanizing Meta-Theory in Beluga 2 / 35

Introduction Beluga:Design and implementation

Mechanizing formal systems and proofs: How and Why?

• Formal systems (given via axioms and inference rules) play an important
role when designing languages and more generally ensure that
software are reliable, safe, and trustworthy.

• Proofs (that a given property is satisfied) are becoming pervasive and an
integral part of certified software. (see: CompCert, DeepSpec,
RustBelt, Sel4, Cogent)

Program
(in Assembler, C,

ML, Java, Rust, ...)

Properties:

– Memory/Type Safety: Prog. doesn’t crash

– Contextual Equivalence: Two programs are
indistinguishable in any valid program context

– Bisimulation: Two systems behave the same

Meta-Theory

B. Pientka Mechanizing Meta-Theory in Beluga 2 / 35

Introduction Beluga:Design and implementation

Challenges in Establishing Formal Guarantees

• Costly

• Large size of formal developments

- CompCert: 4,400 lines of compiler code vs 28,000 lines of verification
- A specification of dependent Haskel [ICFP’17]: 17K Coq code + 13K

generated code from Ott Spec.; 1.4K Ott Specification;

• Low-level representations (variables are modelled via de Bruijn indices)

- D. Hirschkoff [TPHOLs’97]: Bisimulation Proofs for the π-calculus in
Coq (600 out of 800 lemmas are infrastructural)

- Ambler and Crole [TPHOLs’99]: Precongruence of bisimulation for
PCFL (≈ 160 infrastructural lemmas about de Brujn
representation;main lemmas ≈ 34)

- J. Kaiser et. al [FSCD’17]: Relating System F and λ2 (PTS)
de Bruijn over 1K lines of infrastructural code in Coq; over 500 lines in
Abella; about 100 in Beluga

• Scalability, reusability, maintainability, automation

B. Pientka Mechanizing Meta-Theory in Beluga 3 / 35

Introduction Beluga:Design and implementation

Challenges in Establishing Formal Guarantees

• Costly

• Large size of formal developments

- CompCert: 4,400 lines of compiler code vs 28,000 lines of verification
- A specification of dependent Haskel [ICFP’17]: 17K Coq code + 13K

generated code from Ott Spec.; 1.4K Ott Specification;

• Low-level representations (variables are modelled via de Bruijn indices)

- D. Hirschkoff [TPHOLs’97]: Bisimulation Proofs for the π-calculus in
Coq (600 out of 800 lemmas are infrastructural)

- Ambler and Crole [TPHOLs’99]: Precongruence of bisimulation for
PCFL (≈ 160 infrastructural lemmas about de Brujn
representation;main lemmas ≈ 34)

- J. Kaiser et. al [FSCD’17]: Relating System F and λ2 (PTS)
de Bruijn over 1K lines of infrastructural code in Coq; over 500 lines in
Abella; about 100 in Beluga

• Scalability, reusability, maintainability, automation

B. Pientka Mechanizing Meta-Theory in Beluga 3 / 35

Introduction Beluga:Design and implementation

Challenges in Establishing Formal Guarantees

• Costly

• Large size of formal developments

- CompCert: 4,400 lines of compiler code vs 28,000 lines of verification
- A specification of dependent Haskel [ICFP’17]: 17K Coq code + 13K

generated code from Ott Spec.; 1.4K Ott Specification;

• Low-level representations (variables are modelled via de Bruijn indices)

- D. Hirschkoff [TPHOLs’97]: Bisimulation Proofs for the π-calculus in
Coq (600 out of 800 lemmas are infrastructural)

- Ambler and Crole [TPHOLs’99]: Precongruence of bisimulation for
PCFL (≈ 160 infrastructural lemmas about de Brujn
representation;main lemmas ≈ 34)

- J. Kaiser et. al [FSCD’17]: Relating System F and λ2 (PTS)
de Bruijn over 1K lines of infrastructural code in Coq; over 500 lines in
Abella; about 100 in Beluga

• Scalability, reusability, maintainability, automation

B. Pientka Mechanizing Meta-Theory in Beluga 3 / 35

Introduction Beluga:Design and implementation

Challenges in Establishing Formal Guarantees

• Costly

• Large size of formal developments

- CompCert: 4,400 lines of compiler code vs 28,000 lines of verification
- A specification of dependent Haskel [ICFP’17]: 17K Coq code + 13K

generated code from Ott Spec.; 1.4K Ott Specification;

• Low-level representations (variables are modelled via de Bruijn indices)

- D. Hirschkoff [TPHOLs’97]: Bisimulation Proofs for the π-calculus in
Coq (600 out of 800 lemmas are infrastructural)

- Ambler and Crole [TPHOLs’99]: Precongruence of bisimulation for
PCFL (≈ 160 infrastructural lemmas about de Brujn
representation;main lemmas ≈ 34)

- J. Kaiser et. al [FSCD’17]: Relating System F and λ2 (PTS)
de Bruijn over 1K lines of infrastructural code in Coq; over 500 lines in
Abella; about 100 in Beluga

• Scalability, reusability, maintainability, automation

B. Pientka Mechanizing Meta-Theory in Beluga 3 / 35

Introduction Beluga:Design and implementation

Challenges in Establishing Formal Guarantees

• Costly

• Large size of formal developments

- CompCert: 4,400 lines of compiler code vs 28,000 lines of verification
- A specification of dependent Haskel [ICFP’17]: 17K Coq code + 13K

generated code from Ott Spec.; 1.4K Ott Specification;

• Low-level representations (variables are modelled via de Bruijn indices)

- D. Hirschkoff [TPHOLs’97]: Bisimulation Proofs for the π-calculus in
Coq (600 out of 800 lemmas are infrastructural)

- Ambler and Crole [TPHOLs’99]: Precongruence of bisimulation for
PCFL (≈ 160 infrastructural lemmas about de Brujn
representation;main lemmas ≈ 34)

- J. Kaiser et. al [FSCD’17]: Relating System F and λ2 (PTS)
de Bruijn over 1K lines of infrastructural code in Coq; over 500 lines in
Abella; about 100 in Beluga

• Scalability, reusability, maintainability, automation

B. Pientka Mechanizing Meta-Theory in Beluga 3 / 35

Introduction Beluga:Design and implementation

Proofs: The tip of the iceberg

“We may think of [the] proof as an iceberg. In the top of it, we find what
we usually consider the real proof; underwater, the most of the matter,
consisting of all mathematical preliminaries a reader must know in order to
understand what is going on.” S. Berardi [1990]

B. Pientka Mechanizing Meta-Theory in Beluga 4 / 35

Introduction Beluga:Design and implementation

Proofs: The tip of the iceberg

Main Proof

Eigenvariables

Hypothesis Variables
Context

Renaming

Derivation TreeSubstitution

Scope Binding

“We may think of [the] proof as an iceberg. In the top of it, we find what
we usually consider the real proof; underwater, the most of the matter,
consisting of all mathematical preliminaries a reader must know in order to
understand what is going on.” S. Berardi [1990]

B. Pientka Mechanizing Meta-Theory in Beluga 5 / 35

Introduction Beluga:Design and implementation

Question

What are good meta-languages to program and

reason with formal systems and proofs?

“The motivation behind the work in very-high-level languages is to ease the
programming task by providing the programmer with a language containing
primitives or abstractions suitable to his problem area. The programmer is
then able to spend his effort in the right place; he concentrates on solving
his problem, and the resulting program will be more reliable as a result.
Clearly, this is a worthwhile goal.” B. Liskov [1974]

B. Pientka Mechanizing Meta-Theory in Beluga 6 / 35

Introduction Beluga:Design and implementation

Above and Below the Surface

Beluga: Dependently typed Programming and Proof Environment

Main Proof

Eigenvariables

Hypothesis
Context

Variables

Renaming

Derivation TreeSubstitution

Scope Binding

Contextual LF

Functional
Programmming
with Indexed Types

• Below the surface: Support for key concepts based on Contextual LF

• Above the surface: (Co)Inductive Proofs = (Co)Recursive Programs using
(Co)pattern Matching with built-in index language of Contextual LF objects

B. Pientka Mechanizing Meta-Theory in Beluga 7 / 35

Introduction Beluga:Design and implementation

Design of Beluga

• Top : Functional programming with indexed (co)data types
[POPL’08,POPL’12,POPL’13,ICFP’16]

On paper proof In Beluga [IJCAR’10,CADE’15]

Case analysis of inputs Case analysis via pattern matching

Inversion Pattern matching using let-expression

Observations on output Case analysis via copattern matching

(Co)Induction hypothesis (Co)Recursive call

• Bottom: Contextual LF

Well-formed derivations Dependent types
Renaming,Substitution α-renaming, β-reduction in LF

Well-scoped derivation Contextual types and objects [TOCL’08]

Context Context schemas

Properties of contexts Typing for schemas

(weakening, uniqueness)

Simultaneous Substitutions Substitution type [LFMTP’13,15]

(composition, identity)
B. Pientka Mechanizing Meta-Theory in Beluga 8 / 35

Introduction Beluga:Design and implementation

This Talk

Design and implementation of Beluga

• Introduction

• Example: Proof by logical relation

• Writing a proof in Beluga . . .

• Conclusion and curent work

“The limits of my language mean the limits of my world.”
- L. Wittgenstein

B. Pientka Mechanizing Meta-Theory in Beluga 9 / 35

Introduction Beluga:Design and implementation

This Talk

Design and implementation of Beluga

• Introduction

• Example: Proof by logical relations

• Writing a proof in Beluga . . .

• Conclusion and curent work

“The limits of my language mean the limits of my world.”
- L. Wittgenstein

B. Pientka Mechanizing Meta-Theory in Beluga 9 / 35

Introduction Beluga:Design and implementation

Simply Typed Lambda-calculus (Gentzen-style)

Types A,B::= i Terms M, N ::= x | c
| A⇒ B | lam x .M

| app M N

Evaluation Judgment: M −→ M ′ read as “M steps to M ′”

app (lam x .M) N −→ [N/x]M
s/beta

M −→ M
s/refl

M −→ M ′

app M N −→ app M ′ N
s/app M −→ M ′ M ′ −→ N

M −→ N
s/trans

Typing Judgment: M : A read as “M has type A” (Gentzen-style)

c : i
const

x : A
u

...
M : B

lam x .M : A⇒ B
lamx,u M : A⇒ B N : A

app M N : B
app

B. Pientka Mechanizing Meta-Theory in Beluga 10 / 35

Introduction Beluga:Design and implementation

Simply Typed Lambda-calculus (Gentzen-style)

Types A,B::= i Terms M, N ::= x | c
| A⇒ B | lam x .M

| app M N

Evaluation Judgment: M −→ M ′ read as “M steps to M ′”

app (lam x .M) N −→ [N/x]M
s/beta

M −→ M
s/refl

M −→ M ′

app M N −→ app M ′ N
s/app M −→ M ′ M ′ −→ N

M −→ N
s/trans

Typing Judgment: M : A read as “M has type A” (Gentzen-style)

c : i
const

x : A
u

...
M : B

lam x .M : A⇒ B
lamx,u M : A⇒ B N : A

app M N : B
app

B. Pientka Mechanizing Meta-Theory in Beluga 10 / 35

Introduction Beluga:Design and implementation

Simply Typed Lambda-calculus with Contexts

Types and Terms

Types A,B::= i Terms M, N ::= x | c
| A⇒ B | lam x .M

| app M N

Evaluation Judgment: M −→ M ′ read as “M steps to M ′”

app (lamx .M) N −→ [N/x]M
s/beta

M −→ M
s/refl

M −→ M ′

app M N −→ app M ′ N
s/app M −→ M ′ M ′ −→ N

M −→ N
s/trans

Typing Judgment: Γ ` M : A read as “M has type A in context Γ”

x : A ∈ Γ
Γ ` x : A

Γ, x : A `M : B

Γ `lam x .M : A⇒ B
lamx Γ `M : A⇒ B Γ `N A

Γ `app M N : B
app

Context Γ ::= · | Γ, x : A We are introducing the variable x together with
the assumption x : A

B. Pientka Mechanizing Meta-Theory in Beluga 11 / 35

Introduction Beluga:Design and implementation

Weak Normalization for Simply Typed Lambda-calculus

Theorem

If ` M : A then M halts, i.e. there exists a value V s.t. M −→∗ V .

Proof.

1 Define reducibility candidate RA

Ri = {M | M halts}
RA⇒B = {M | M halts and ∀N ∈ RA, (app M N) ∈ RB}

2 If M ∈ RA then M halts.

3 Backwards closed: If M ′ ∈ RA and M −→ M ′ then M ∈ RA.

4 Fundamental Lemma: If ` M : A then M ∈ RA. (Requires a generalization)

B. Pientka Mechanizing Meta-Theory in Beluga 12 / 35

Introduction Beluga:Design and implementation

Weak Normalization for Simply Typed Lambda-calculus

Theorem

If ` M : A then M halts, i.e. there exists a value V s.t. M −→∗ V .

Proof.

1 Define reducibility candidate RA

Ri = {M | M halts}
RA⇒B = {M | M halts and ∀N ∈ RA, (app M N) ∈ RB}

2 If M ∈ RA then M halts.

3 Backwards closed: If M ′ ∈ RA and M −→ M ′ then M ∈ RA.

4 Fundamental Lemma: If ` M : A then M ∈ RA. (Requires a generalization)

B. Pientka Mechanizing Meta-Theory in Beluga 12 / 35

Introduction Beluga:Design and implementation

Weak Normalization for Simply Typed Lambda-calculus

Theorem

If ` M : A then M halts, i.e. there exists a value V s.t. M −→∗ V .

Proof.

1 Define reducibility candidate RA

Ri = {M | M halts}
RA⇒B = {M | M halts and ∀N ∈ RA, (app M N) ∈ RB}

2 If M ∈ RA then M halts.

3 Backwards closed: If M ′ ∈ RA and M −→ M ′ then M ∈ RA.

4 Fundamental Lemma: If ` M : A then M ∈ RA. (Requires a generalization)

B. Pientka Mechanizing Meta-Theory in Beluga 12 / 35

Introduction Beluga:Design and implementation

Generalization of Fundamental Lemma

Lemma (Main lemma)

If D : Γ ` M : A and σ ∈ RΓ then [σ]M ∈ RA.

where σ ∈ RΓ is defined as:

· ∈ R·
σ ∈ RΓ N ∈ RA

(σ,N/x) ∈ RΓ,x :A

B. Pientka Mechanizing Meta-Theory in Beluga 13 / 35

Introduction Beluga:Design and implementation

Generalization of Fundamental Lemma

Lemma (Main lemma)

If D : Γ ` M : A and σ ∈ RΓ then [σ]M ∈ RA.

Proof.

Case D =

D1

Γ, x :A ` M : B

Γ ` lam x .M : A⇒ B
lam

[σ](lam x .M) = lam x .([σ, x/x]M) by properties of substitution
halts (lam x .[σ, x/x]M) since it is a value
Suppose N ∈ RA.

[σ,N/x]M ∈ RB by I.H. on D1 since σ ∈ RΓ

[N/x][σ, x/x]M ∈ RB by properties of substitution

app (lam x . [σ, x/x]M) N ∈ RB by Backwards closure

Hence [σ](lam x .M) ∈ RA⇒B by definition

B. Pientka Mechanizing Meta-Theory in Beluga 14 / 35

Introduction Beluga:Design and implementation

Challenging Benchmark

“I discovered that the core part of the proof (here proving lemmas about
CR) is fairly straightforward and only requires a good understanding of the
paper version. However, in completing the proof I observed that in certain
places I had to invest much more work than expected, e.g. proving lemmas
about substitution and weakening.” T. Altenkirch [TLCA’93]

B. Pientka Mechanizing Meta-Theory in Beluga 15 / 35

Introduction Beluga:Design and implementation

Challenging Benchmark

“I discovered that the core part of the proof (here proving lemmas about
CR) is fairly straightforward and only requires a good understanding of the
paper version. However, in completing the proof I observed that in certain
places I had to invest much more work than expected, e.g. proving lemmas
about substitution and weakening.” T. Altenkirch [TLCA’93]

B. Pientka Mechanizing Meta-Theory in Beluga 15 / 35

Introduction Beluga:Design and implementation

This Talk

Design and implementation of Beluga

• Introduction

• Example: Proof by logical relations

• Writing a proof in Beluga . . .

• Conclusion and curent work

B. Pientka Mechanizing Meta-Theory in Beluga 16 / 35

Introduction Beluga:Design and implementation

Step 1: Represent Types and Lambda-terms in LF

Types A,B::= i Terms M, N ::= x | c
| A⇒ B | lam x .M

| app M N
Typing rules

c : i
const

x : A
u

...
M : B

lam x .M : A⇒ B
lamx M : A⇒ B N : A

app M N : B
app

LF representation in Beluga

LF tp:type =
| i: tp
| arr: tp → tp → tp;

LF tm: tp → type =
| c : tm i
| lam:(tm A → tm B) → tm (arr A B)
| app: tm (arr A B) → tm A → tm B;

• Higher-order abstract syntax (HOAS) to represent variabe binding
(lam x .app (lam y .y) x) is represented as (lam λx. app (lam λy.y) x).

• Inheriting α-renaming and single substitutions (β-reduction) from LF

B. Pientka Mechanizing Meta-Theory in Beluga 17 / 35

Introduction Beluga:Design and implementation

Step 1: Encoding Evaluation in LF

Evaluation Judgment: M −→ M ′ read as “M steps to M ′”

app (lam x .M) N −→ [N/x]M
s/beta

M −→ M
s/refl

M −→ M ′

app M N −→ app M ′ N
s/app M −→ M ′ M ′ −→ N

M −→ N
s/trans

LF representation in Beluga

LF step: tm A → tm A → type =
| s/beta : step (app (lam M) N) (M N)
| s/app : step M M’ → step (app M N) (app M’ N)
| s/refl : step M M
| s/trans: step M M’ → step M’ N → step M N;

• Substitution in the tm language is modelled
via LF application and LF β-reduction

B. Pientka Mechanizing Meta-Theory in Beluga 18 / 35

Introduction Beluga:Design and implementation

Step 1: Encoding Evaluation in LF

Evaluation Judgment: M −→ M ′ read as “M steps to M ′”

app (lam x .M) N −→ [N/x]M
s/beta

M −→ M
s/refl

M −→ M ′

app M N −→ app M ′ N
s/app M −→ M ′ M ′ −→ N

M −→ N
s/trans

LF representation in Beluga

LF step: tm A → tm A → type =
| s/beta : step (app (lam M) N) (M N)
| s/app : step M M’ → step (app M N) (app M’ N)
| s/refl : step M M
| s/trans: step M M’ → step M’ N → step M N;

• Substitution in the tm language is modelled
via LF application and LF β-reduction

B. Pientka Mechanizing Meta-Theory in Beluga 18 / 35

Introduction Beluga:Design and implementation

So far . . .

. . . encodings in the logical framework LF

Question: How to reason about LF terms and types?

Answer: Contextual terms and types [TOCL’08]

B. Pientka Mechanizing Meta-Theory in Beluga 19 / 35

Introduction Beluga:Design and implementation

So far . . .

. . . encodings in the logical framework LF

Question: How to reason about LF terms and types?

Answer: Contextual terms and types [TOCL’08]

B. Pientka Mechanizing Meta-Theory in Beluga 19 / 35

Introduction Beluga:Design and implementation

So far . . .

. . . encodings in the logical framework LF

Question: How to reason about LF terms and types?

Answer: Contextual terms and types [TOCL’08]

B. Pientka Mechanizing Meta-Theory in Beluga 19 / 35

Introduction Beluga:Design and implementation

What are contextual terms and types?

Recall: lam λx. app (lam λy.y) x

B. Pientka Mechanizing Meta-Theory in Beluga 20 / 35

Introduction Beluga:Design and implementation

What are contextual terms and types?

Recall: lam λx. app (lam λy.y) x

• Subexpression app (lam λy.y) x refers to the variable x!

• The contextual view:
Pair up terms and types with their context of variables!

[x:tm _ ` app (lam λy.y) x] has type [x:tm _ ` tm _]

• Contextual terms and types are closed objects!
=⇒ there are canonical forms
=⇒ check for equality by comparing their canonical forms

• Reason about contextual terms and types using first-order logic with
least and greatest fixed points.
=⇒ need to abstract over contexts

B. Pientka Mechanizing Meta-Theory in Beluga 19 / 35

Introduction Beluga:Design and implementation

What are contextual terms and types?

Recall: lam λx. app (lam λy.y) x

• Subexpression app (lam λy.y) x refers to the variable x!

• The contextual view:
Pair up terms and types with their context of variables!

[x:tm _ ` app (lam λy.y) x] has type [x:tm _ ` tm _]

• Contextual terms and types are closed objects!
=⇒ there are canonical forms
=⇒ check for equality by comparing their canonical forms

• Reason about contextual terms and types using first-order logic with
least and greatest fixed points.
=⇒ need to abstract over contexts

B. Pientka Mechanizing Meta-Theory in Beluga 19 / 35

Introduction Beluga:Design and implementation

What are contextual terms and types?

Recall: lam λx. app (lam λy.y) x

• Subexpression app (lam λy.y) x refers to the variable x!

• The contextual view:
Pair up terms and types with their context of variables!

[x:tm _ ` app (lam λy.y) x] has type [x:tm _ ` tm _]

• Contextual terms and types are closed objects!
=⇒ there are canonical forms
=⇒ check for equality by comparing their canonical forms

• Reason about contextual terms and types using first-order logic with
least and greatest fixed points.
=⇒ need to abstract over contexts

B. Pientka Mechanizing Meta-Theory in Beluga 19 / 35

Introduction Beluga:Design and implementation

What are contextual terms and types?

Recall: lam λx. app (lam λy.y) x

• Subexpression app (lam λy.y) x refers to the variable x!

• The contextual view:
Pair up terms and types with their context of variables!

[x:tm _ ` app (lam λy.y) x] has type [x:tm _ ` tm _]

• Contextual terms and types are closed objects!
=⇒ there are canonical forms
=⇒ check for equality by comparing their canonical forms

• Reason about contextual terms and types using first-order logic with
least and greatest fixed points.
=⇒ need to abstract over contexts

B. Pientka Mechanizing Meta-Theory in Beluga 19 / 35

Introduction Beluga:Design and implementation

Reducibility Candidates as Indexed Types

Reducibility candidates for terms M ∈ RA:

Ri = {M | halts M}
RA⇒B = {M | halts M and ∀N ∈ RA, (app M N) ∈ RB}

Computation-level data types in Beluga

stratified Reduce : {A:[tp]} {M:[tm A]} type =
| I : [halts M] → Reduce [i] [M]
| Arr : [halts M] →

({N:[tm A]} Reduce [A] [N] → Reduce [B] [app M N])
→ Reduce [arr A B] [M];

• [app M N] and [arr A B] is shorthand for [` app M N] and [` arr A B];
they are contextual types [TOCL’08].

• Note: → is overloaded.

- → is the LF function space : binders in the object language are
modelled by LF functions (used inside [])

- → is a computation-level function (used outside [])

• Not strictly positive definition, but stratified.

B. Pientka Mechanizing Meta-Theory in Beluga 20 / 35

Introduction Beluga:Design and implementation

Reducibility Candidates as Indexed Types

Reducibility candidates for terms M ∈ RA:

Ri = {M | halts M}
RA⇒B = {M | halts M and ∀N ∈ RA, (app M N) ∈ RB}

Computation-level data types in Beluga

stratified Reduce : {A:[tp]} {M:[tm A]} type =
| I : [halts M] → Reduce [i] [M]
| Arr : [halts M] →

({N:[tm A]} Reduce [A] [N] → Reduce [B] [app M N])
→ Reduce [arr A B] [M];

• [app M N] and [arr A B] is shorthand for [` app M N] and [` arr A B];
they are contextual types [TOCL’08].

• Note: → is overloaded.

- → is the LF function space : binders in the object language are
modelled by LF functions (used inside [])

- → is a computation-level function (used outside [])

• Not strictly positive definition, but stratified.
B. Pientka Mechanizing Meta-Theory in Beluga 20 / 35

Introduction Beluga:Design and implementation

Reducibility Candidates as Indexed Types

Reducibility candidates for substitutions σ ∈ RΓ :

· ∈ R·
σ ∈ RΓ N ∈ RA

(σ,N/x) ∈ RΓ,x :A

Computation-level data types in Beluga

inductive RedSub : (Γ:ctx){σ: ` Γ} type =
| Nil : RedSub [` ^]
| Cons : RedSub [` σ] → Reduce [` A] [` M] → RedSub [` σ, M];

• Contexts are structured sequences and are classified by context schemas

schema ctx = x:tm A.

• Substitution σ are first-class and have type Ψ ` Φ providing a mapping from
Φ to Ψ.

B. Pientka Mechanizing Meta-Theory in Beluga 21 / 35

Introduction Beluga:Design and implementation

Reducibility Candidates as Indexed Types

Reducibility candidates for substitutions σ ∈ RΓ :

· ∈ R·
σ ∈ RΓ N ∈ RA

(σ,N/x) ∈ RΓ,x :A

Computation-level data types in Beluga

inductive RedSub : (Γ:ctx){σ: ` Γ} type =
| Nil : RedSub [` ^]
| Cons : RedSub [` σ] → Reduce [` A] [` M] → RedSub [` σ, M];

• Contexts are structured sequences and are classified by context schemas

schema ctx = x:tm A.

• Substitution σ are first-class and have type Ψ ` Φ providing a mapping from
Φ to Ψ.

B. Pientka Mechanizing Meta-Theory in Beluga 21 / 35

Introduction Beluga:Design and implementation

Theorems as Computation-level Types

Lemma (Backward closed)

If M −→ M ′ and M ′ ∈ RA then M ∈ RA.

rec closed : [step M M’] → Reduce [A] [M’] → Reduce [A] [M] = ? ;

Lemma (Main lemma)

If Γ ` M : A and σ ∈ RΓ then [σ]M ∈ RA.

rec main : {Γ:ctx}{M:[Γ ` tm A[]]} RedSub [` σ] → Reduce [A] [M[σ]] = ? ;

B. Pientka Mechanizing Meta-Theory in Beluga 22 / 35

Introduction Beluga:Design and implementation

Fundamental Lemma

rec closed : [step M M’] → Reduce [A] [M’] → Reduce [A] [M] = ? ;

rec main : {Γ:ctx}{M:[Γ ` tm A[]]} RedSub [` σ] → Reduce [A] [M[σ]] =

mlam Γ⇒mlam M ⇒ fn rs ⇒ case [Γ ` M] of

| [Γ `#p] ⇒lookup [Γ] [Γ `#p] rs % Variable

| [Γ ` app M1 M2] ⇒ % Application
let Arr ha f = main [Γ] [Γ ` M1] rs in
f [` _] (main [Γ] [Γ ` M2] rs)

| [Γ ` lam λx. M1] ⇒ % Abstraction
Arr [` h/value s/refl v/lam]
(mlam N ⇒ fn rN ⇒ closed [` s/beta]

(main [Γ,x:tm _] [Γ,x ` M1] (Cons rs rN)))

| [Γ ` c] ⇒ I [` h/value s/refl v/c]; % Constant

• Direct encoding of on-paper proof

• Equations about substitution properties automatically discharged
(amounts to roughly a dozen lemmas about substitution and weakening)

• Total encoding about 75 lines of Beluga code

B. Pientka Mechanizing Meta-Theory in Beluga 23 / 35

Introduction Beluga:Design and implementation

Fundamental Lemma

rec closed : [step M M’] → Reduce [A] [M’] → Reduce [A] [M] = ? ;

rec main : {Γ:ctx}{M:[Γ ` tm A[]]} RedSub [` σ] → Reduce [A] [M[σ]] =

mlam Γ⇒mlam M ⇒ fn rs ⇒ case [Γ ` M] of

| [Γ `#p] ⇒lookup [Γ] [Γ `#p] rs % Variable

| [Γ ` app M1 M2] ⇒ % Application
let Arr ha f = main [Γ] [Γ ` M1] rs in
f [` _] (main [Γ] [Γ ` M2] rs)

| [Γ ` lam λx. M1] ⇒ % Abstraction
Arr [` h/value s/refl v/lam]
(mlam N ⇒ fn rN ⇒ closed [` s/beta]

(main [Γ,x:tm _] [Γ,x ` M1] (Cons rs rN)))

| [Γ ` c] ⇒ I [` h/value s/refl v/c]; % Constant

• Direct encoding of on-paper proof

• Equations about substitution properties automatically discharged
(amounts to roughly a dozen lemmas about substitution and weakening)

• Total encoding about 75 lines of Beluga code

B. Pientka Mechanizing Meta-Theory in Beluga 23 / 35

Introduction Beluga:Design and implementation

Fundamental Lemma

rec closed : [step M M’] → Reduce [A] [M’] → Reduce [A] [M] = ? ;

rec main : {Γ:ctx}{M:[Γ ` tm A[]]} RedSub [` σ] → Reduce [A] [M[σ]] =

mlam Γ⇒mlam M ⇒ fn rs ⇒ case [Γ ` M] of

| [Γ `#p] ⇒lookup [Γ] [Γ `#p] rs % Variable

| [Γ ` app M1 M2] ⇒ % Application
let Arr ha f = main [Γ] [Γ ` M1] rs in
f [` _] (main [Γ] [Γ ` M2] rs)

| [Γ ` lam λx. M1] ⇒ % Abstraction
Arr [` h/value s/refl v/lam]
(mlam N ⇒ fn rN ⇒ closed [` s/beta]

(main [Γ,x:tm _] [Γ,x ` M1] (Cons rs rN)))

| [Γ ` c] ⇒ I [` h/value s/refl v/c]; % Constant

• Direct encoding of on-paper proof

• Equations about substitution properties automatically discharged
(amounts to roughly a dozen lemmas about substitution and weakening)

• Total encoding about 75 lines of Beluga code

B. Pientka Mechanizing Meta-Theory in Beluga 23 / 35

Introduction Beluga:Design and implementation

Fundamental Lemma

rec closed : [step M M’] → Reduce [A] [M’] → Reduce [A] [M] = ? ;

rec main : {Γ:ctx}{M:[Γ ` tm A[]]} RedSub [` σ] → Reduce [A] [M[σ]] =

mlam Γ⇒mlam M ⇒ fn rs ⇒ case [Γ ` M] of

| [Γ `#p] ⇒lookup [Γ] [Γ `#p] rs % Variable

| [Γ ` app M1 M2] ⇒ % Application
let Arr ha f = main [Γ] [Γ ` M1] rs in
f [` _] (main [Γ] [Γ ` M2] rs)

| [Γ ` lam λx. M1] ⇒ % Abstraction
Arr [` h/value s/refl v/lam]
(mlam N ⇒ fn rN ⇒ closed [` s/beta]

(main [Γ,x:tm _] [Γ,x ` M1] (Cons rs rN)))

| [Γ ` c] ⇒ I [` h/value s/refl v/c]; % Constant

• Direct encoding of on-paper proof

• Equations about substitution properties automatically discharged
(amounts to roughly a dozen lemmas about substitution and weakening)

• Total encoding about 75 lines of Beluga code

B. Pientka Mechanizing Meta-Theory in Beluga 23 / 35

Introduction Beluga:Design and implementation

Fundamental Lemma

rec closed : [step M M’] → Reduce [A] [M’] → Reduce [A] [M] = ? ;

rec main : {Γ:ctx}{M:[Γ ` tm A[]]} RedSub [` σ] → Reduce [A] [M[σ]] =

mlam Γ⇒mlam M ⇒ fn rs ⇒ case [Γ ` M] of

| [Γ `#p] ⇒lookup [Γ] [Γ `#p] rs % Variable

| [Γ ` app M1 M2] ⇒ % Application
let Arr ha f = main [Γ] [Γ ` M1] rs in
f [` _] (main [Γ] [Γ ` M2] rs)

| [Γ ` lam λx. M1] ⇒ % Abstraction
Arr [` h/value s/refl v/lam]
(mlam N ⇒ fn rN ⇒ closed [` s/beta]

(main [Γ,x:tm _] [Γ,x ` M1] (Cons rs rN)))

| [Γ ` c] ⇒ I [` h/value s/refl v/c]; % Constant

• Direct encoding of on-paper proof

• Equations about substitution properties automatically discharged
(amounts to roughly a dozen lemmas about substitution and weakening)

• Total encoding about 75 lines of Beluga code

B. Pientka Mechanizing Meta-Theory in Beluga 23 / 35

Introduction Beluga:Design and implementation

Fundamental Lemma

rec closed : [step M M’] → Reduce [A] [M’] → Reduce [A] [M] = ? ;

rec main : {Γ:ctx}{M:[Γ ` tm A[]]} RedSub [` σ] → Reduce [A] [M[σ]] =

mlam Γ⇒mlam M ⇒ fn rs ⇒ case [Γ ` M] of

| [Γ `#p] ⇒lookup [Γ] [Γ `#p] rs % Variable

| [Γ ` app M1 M2] ⇒ % Application
let Arr ha f = main [Γ] [Γ ` M1] rs in
f [` _] (main [Γ] [Γ ` M2] rs)

| [Γ ` lam λx. M1] ⇒ % Abstraction
Arr [` h/value s/refl v/lam]
(mlam N ⇒ fn rN ⇒ closed [` s/beta]

(main [Γ,x:tm _] [Γ,x ` M1] (Cons rs rN)))

| [Γ ` c] ⇒ I [` h/value s/refl v/c]; % Constant

• Direct encoding of on-paper proof

• Equations about substitution properties automatically discharged
(amounts to roughly a dozen lemmas about substitution and weakening)

• Total encoding about 75 lines of Beluga code

B. Pientka Mechanizing Meta-Theory in Beluga 23 / 35

Introduction Beluga:Design and implementation

Fundamental Lemma

rec closed : [step M M’] → Reduce [A] [M’] → Reduce [A] [M] = ? ;

rec main : {Γ:ctx}{M:[Γ ` tm A[]]} RedSub [` σ] → Reduce [A] [M[σ]] =

mlam Γ⇒mlam M ⇒ fn rs ⇒ case [Γ ` M] of

| [Γ `#p] ⇒lookup [Γ] [Γ `#p] rs % Variable

| [Γ ` app M1 M2] ⇒ % Application
let Arr ha f = main [Γ] [Γ ` M1] rs in
f [` _] (main [Γ] [Γ ` M2] rs)

| [Γ ` lam λx. M1] ⇒ % Abstraction
Arr [` h/value s/refl v/lam]
(mlam N ⇒ fn rN ⇒ closed [` s/beta]

(main [Γ,x:tm _] [Γ,x ` M1] (Cons rs rN)))

| [Γ ` c] ⇒ I [` h/value s/refl v/c]; % Constant

• Direct encoding of on-paper proof

• Equations about substitution properties automatically discharged
(amounts to roughly a dozen lemmas about substitution and weakening)

• Total encoding about 75 lines of Beluga code

B. Pientka Mechanizing Meta-Theory in Beluga 23 / 35

Introduction Beluga:Design and implementation

Some Alternatives

General Theorem Proving Environments

• Calculus of Construction (Coq) / Martin Löf Type Theory (Agda)
No special support for variables, assumptions, derivation trees, etc.

About a dozen extra lemmas

• Isabelle / Nominal
support for variable names, but not for assumptions, derivation trees, etc.

based on nominal set theory; about a dozen extra lemmas

Domain-specific Provers (Higher-Order Abstract Syntax (HOAS))

• Abella: encode second-order hereditary Harrop (HH) logic in G, an
extension of first-order logic with a new quantifier ∇, and develop inductive
proofs in G by reasoning about the size of HH derivations .

diverges a bit from on-paper proof; 4 additional lemmas

• Twelf: Too weak for directly encoding such proofs; implement auxiliary

logic.

B. Pientka Mechanizing Meta-Theory in Beluga 24 / 35

Introduction Beluga:Design and implementation

Some Alternatives

General Theorem Proving Environments

• Calculus of Construction (Coq) / Martin Löf Type Theory (Agda)
No special support for variables, assumptions, derivation trees, etc.

About a dozen extra lemmas

• Isabelle / Nominal
support for variable names, but not for assumptions, derivation trees, etc.

based on nominal set theory; about a dozen extra lemmas

Domain-specific Provers (Higher-Order Abstract Syntax (HOAS))

• Abella: encode second-order hereditary Harrop (HH) logic in G, an
extension of first-order logic with a new quantifier ∇, and develop inductive
proofs in G by reasoning about the size of HH derivations .

diverges a bit from on-paper proof; 4 additional lemmas

• Twelf: Too weak for directly encoding such proofs; implement auxiliary

logic.

B. Pientka Mechanizing Meta-Theory in Beluga 24 / 35

Introduction Beluga:Design and implementation

Logical Relations on Open Terms

• Allowing reductions under lambda-abstractions:

M −→ N
lam x .M −→ lam x .N

s/lamx

• Revisiting the reducibility candidates
for well-scoped and well-typed open terms Γ `M ∈ RA:

Ri = {Ψ `M | Ψ `M halts}
RA⇒B = {Ψ `M | Ψ `M halts and ∀Φ ≥ρ Ψ,N where Φ `N : A,

if (Φ `N) ∈ RA then (Φ `app M[ρ] N) ∈ RB}

B. Pientka Mechanizing Meta-Theory in Beluga 25 / 35

Introduction Beluga:Design and implementation

Logical Relations on Open Terms

• Allowing reductions under lambda-abstractions:

M −→ N
lam x .M −→ lam x .N

s/lamx

• Revisiting the reducibility candidates
for well-scoped and well-typed open terms Γ `M ∈ RA:

Ri = {Ψ `M | Ψ `M halts}
RA⇒B = {Ψ `M | Ψ `M halts and ∀Φ ≥ρ Ψ,N where Φ `N : A,

if (Φ `N) ∈ RA then (Φ `app M[ρ] N) ∈ RB}

B. Pientka Mechanizing Meta-Theory in Beluga 25 / 35

Introduction Beluga:Design and implementation

Encoding Logical Relations on Open Terms

Definition on paper:

Ri = {Ψ `M | Ψ `M halts}
RA⇒B = {Ψ `M | Ψ `M halts and ∀Φ ≥ρ Ψ,N where Φ `N : A,

if (Φ `N) ∈ RA then (Φ `app M[ρ] N) ∈ RB}

Encoding in Beluga

stratified Reduce : (Ψ:nctx) {A:[tp]} {M:[Ψ ` tm A[]]} type =
| Base : Halts [i] [Ψ ` M] → Reduce [i] [Ψ ` M]
| Arr : {M:[Ψ ` tm (arr A[] B[])]}

Halts [arr A B] [Ψ ` M] →
({Φ:nctx} {ρ:[Φ `Ψ]} {N:[Φ ` tm A[]]}

Reduce [A] [Φ ` N] → Reduce [B] [Φ ` app M[ρ] N])
→ Reduce [arr A B] [Ψ ` M];

See our journal paper discussing case studies [MSCS’16]

B. Pientka Mechanizing Meta-Theory in Beluga 26 / 35

Introduction Beluga:Design and implementation

POPLMark Reloaded!

Strong normalization of a simply-typed lambda-
calculus using Kripke-style logical relations.

B. Pientka Mechanizing Meta-Theory in Beluga 27 / 35

Introduction Beluga:Design and implementation

POPLMark Reloaded: Goal

Benchmark problems that

• Push the state of the art in the area and outline new areas of research

• Compare systems and mechanized proofs qualitatively

• Understand what infrastructural parts (boilerplate) should be
generically supported and factored

• Find bugs in existing proof assistants

• Highlight theoretical limitations of existing proof environments

• Highlight practical limitations of existing proof environments

• Polularize and provide a better understanding of logical relations

B. Pientka Mechanizing Meta-Theory in Beluga 28 / 35

Introduction Beluga:Design and implementation

Question

Why pick strong normalization for
simply-typed lambda-calculus using

Kripke-style logical relations?

Follow up:

We can prove SN without Kripke-style logical relations and we’ve
already done it.

B. Pientka Mechanizing Meta-Theory in Beluga 29 / 35

Introduction Beluga:Design and implementation

Question

Why pick strong normalization for
simply-typed lambda-calculus using

Kripke-style logical relations?

Follow up:

We can prove SN without Kripke-style logical relations and we’ve
already done it.

B. Pientka Mechanizing Meta-Theory in Beluga 29 / 35

Introduction Beluga:Design and implementation

Witness 1: Lego [Altenkirch’93]

. . . “following Girard’s Proofs and Types”

Characteristic Features:

• Terms are not well-scoped or well-typed

• Candidate relation is untyped and does not enforce well-scoped terms
=⇒ does not scale to typed-directed evaluatation or equivalence
=⇒ maybe better techniquues to modularize and structure proof

B. Pientka Mechanizing Meta-Theory in Beluga 30 / 35

Introduction Beluga:Design and implementation

Witness 2: Abella, ATS/HOAS

. . . “following Girard’s Proofs and Types”

• Strictly speaking:

SN for simply-typed λ-calculus plus one constant that has any
type.

• Adding a constant significantly simplifies the proof

• Reducibility of terms only defined on closed terms

• Strictly speaking:

Show that SN for simply-typed λ-calculus plus one constant
implies also SN for open simply-typed λ-terms

B. Pientka Mechanizing Meta-Theory in Beluga 31 / 35

Introduction Beluga:Design and implementation

Witness 2: Abella, ATS/HOAS

. . . “following Girard’s Proofs and Types”

• Strictly speaking:

SN for simply-typed λ-calculus plus one constant that has any
type.

• Adding a constant significantly simplifies the proof

• Reducibility of terms only defined on closed terms

• Strictly speaking:

Show that SN for simply-typed λ-calculus plus one constant
implies also SN for open simply-typed λ-terms

B. Pientka Mechanizing Meta-Theory in Beluga 31 / 35

Introduction Beluga:Design and implementation

A Call for Action

• Be part of formulating and tackling the challenge

• Choose your favorite proof assistant and complete the challenge

B. Pientka Mechanizing Meta-Theory in Beluga 32 / 35

Introduction Beluga:Design and implementation

Status Report

• Prototype in OCaml (ongoing - last release March 2015)
providing an interactive programming mode, totality checker [CADE’15]

https://github.com/Beluga-lang/Beluga

• Mechanizing Types and Programming Languages - A companion:

https://github.com/Beluga-lang/Meta

B. Pientka Mechanizing Meta-Theory in Beluga 33 / 35

https://github.com/Beluga-lang/Beluga
https://github.com/Beluga-lang/Meta

Introduction Beluga:Design and implementation

Current and Future Directions

• Lincx: A linear logical framework LF with first-class contexts (A.L. Georges,

A. Murawska, S. Otis)[ESOP’17]

• Programming with syntax in existing proof and programming
environments (F. Ferreira[ESOP’17])

Translate contextual objects via a deep embedding

• Coinductive Proofs (e.g. Contextual Equivalence)[ICFP’16]

(joint work with A. Momigliano, D. Thibodeau [Dale’s Festschrift’17])

• Full Dependent Type Theory with Contextual Objects and First-class
Contexts (joint work with A. Abel, F. Ferreira, D. Thibodeau, R. Zucchini)

B. Pientka Mechanizing Meta-Theory in Beluga 34 / 35

Introduction Beluga:Design and implementation

The End

Thank you!

Download prototype and examples at

http://complogic.cs.mcgill.ca/beluga/

Thanks go to: Andrew Cave, Joshua Dunfield, Olivier Savary Be-
langer, Matthias Boespflug, Scott Cooper, Francisco Ferreira, Aidan
Marchildon, Stefan Monnier, Agata Murawska, Nicolas Jeannerod,
David Thibodeau, Shawn Otis, Rohan Jacob Rao, Shanshan Ruan,
Tao Xue

“A language that doesn’t affect the way you think about
programming, is not worth knowing.“ - Alan Perlis

B. Pientka Mechanizing Meta-Theory in Beluga 35 / 35

	Introduction
	Beluga:Design and implementation

