

Improved Certification of Complexity Proofs for Term Rewrite Systems

René Thiemann

IFIP WG 1.6, Dortmund, June 26

Supported by the Austrian Science Fund (FWF) project Y757

Overview

- IsaFoR + CeTA: Certifying Termination and Complexity Proofs
- Certifying Matrix Growth
- Formalization of the Perron–Frobenius Theorem

Annual International Termination Competition

Annual International Termination Competition

Annual International Termination Competition

automatic termination and complexity tools - powerful, complex, unreliable 2004 2005 ... 2007 ...) ? TRS 1 Yes + HR-Proof + MR-Proof → Yes + HR-Proof + MR-Proof TRS 4 Yes + HR-Proof + MR-Proof → No + HR-Proof + MR-Proof TRS 5 Yes + HR-Proof + MR-Proof

Certification of Termination Proofs

automatic termination and complexity tools – powerful, complex, unreliable

certifiers

- reliable, soundness proof in proof assistants
- revealed errors in tools and papers
- certified termination and complexity analysis

Certification of Termination Proofs

automatic termination and complexity tools – powerful, complex, unreliable

. . .

certifiers

- reliable, soundness proof in proof assistants
- revealed errors in tools and papers
- certified termination and complexity analysis

- CeTA: certifier for termination, complexity, confluence, ...
- soundness of CeTA: Isabelle Formalization of Rewriting developed in collaboration with Christian Sternagel and

Certification of Termination Proofs

automatic termination and complexity tools – powerful, complex, unreliable

certifiers

- reliable, soundness proof in proof assistants
- revealed errors in tools and papers
- certified termination and complexity analysis

- CeTA: certifier for termination, complexity, confluence, ...
- soundness of CeTA: Isabelle Formalization of Rewriting developed in collaboration with Christian Sternagel and
- this talk

improvements of IsaFoR/CeTA for complexity proofs

Complexity of Term Rewrite Systems

 $\operatorname{sort}(\operatorname{Cons}(x, xs)) \to \operatorname{insort}(x, \operatorname{sort}(xs))$ $\operatorname{sort}(\operatorname{Nil}) \to \operatorname{Nil}$ $\operatorname{insort}(x, \operatorname{Cons}(y, ys)) \to \operatorname{Cons}(x, \operatorname{Cons}(y, ys)) \qquad | x \leq y$ $\operatorname{insort}(x, \operatorname{Cons}(y, ys)) \to \operatorname{Cons}(y, \operatorname{insort}(x, ys)) \qquad | x \leq y$ $\operatorname{insort}(x, \operatorname{Nil}) \to \operatorname{Cons}(x, \operatorname{Nil})$

Aim: bound on maximal number of rewrite steps starting from

 $sort(Cons(x_1, \dots Cons(x_n, Nil)))$

Running Automated Complexity tool Running TCT on TRS yields $O(n^2)$ + certificate

$$\llbracket \text{sort} \rrbracket (xs) = \begin{pmatrix} 3 & 3 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \cdot \llbracket xs \rrbracket$$
$$\llbracket \text{insort} \rrbracket (x, xs) = \begin{pmatrix} 1 & 1 & 2 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \cdot \llbracket xs \rrbracket + \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix}$$
$$\llbracket \text{Cons} \rrbracket (x, xs) = \underbrace{\begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}}_{A} \cdot \llbracket xs \rrbracket + \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}$$
$$\llbracket \text{Nil} \rrbracket = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$$

5

Certification — Step 1

- ensure termination: check strict decrease in every rewrite step
- for rewrite rule sort(Cons(x, xs)) → insort(x, sort(xs)) check

 $\begin{bmatrix} \text{sort}(\text{Cons}(x, xs)) \end{bmatrix} = \begin{pmatrix} 3 & 3 & 3 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{bmatrix} xs \end{bmatrix} + \begin{pmatrix} 3 \\ 2 \\ 2 \end{pmatrix} \ge \begin{pmatrix} 3 & 3 & 3 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{bmatrix} xs \end{bmatrix} + \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix} = \begin{bmatrix} \text{insort}(x, \text{sort}(xs)) \end{bmatrix}$

Certification — Step 2

bound initial interpretation

 $\llbracket \operatorname{sort}(\operatorname{Cons}(x_1, \dots \operatorname{Cons}(x_n, \operatorname{Nil}))) \rrbracket = \begin{pmatrix} 3 & 3 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} A^n \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} + \sum_{i < n} A^i \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} \end{pmatrix} \in \mathcal{O}(n \cdot A^n)$

 \implies key analysis: growth of values of A^n depending on n

Matrix Growth

• input: non-negative real matrix

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

• task: decide matrix growth

how large do values in A^n get for increasing n?

Matrix A has eigenvector $v \neq 0$ with eigenvalue λ if

 $Av = \lambda v$

Consequences

- $A^n v = \lambda^n v$
- $|\mathbf{A}^n \mathbf{v}| = |\lambda|^n |\mathbf{v}|$
- if $|\lambda| > 1$ then A^n grows exponentially

Matrix A has eigenvector $v \neq 0$ with eigenvalue λ if

 $Av = \lambda v$

Consequences

- $A^n v = \lambda^n v$
- $|\mathbf{A}^n \mathbf{v}| = |\lambda|^n |\mathbf{v}|$
- if $|\lambda| > 1$ then A^n grows exponentially

Theorem

Aⁿ grows polynomially if and only if $|\lambda| \leqslant 1$ for all eigenvalues λ of A

Matrix A has eigenvector $v \neq 0$ with eigenvalue λ if

 $Av = \lambda v$

Consequences

- $A^n v = \lambda^n v$
- $|\mathbf{A}^n \mathbf{v}| = |\lambda|^n |\mathbf{v}|$
- if $|\lambda| > 1$ then A^n grows exponentially

Theorem

Aⁿ grows polynomially if and only if $|\lambda| \leqslant 1$ for all eigenvalues λ of A

Remark

- λ is eigenvalue of A if and only if
 - λ is root of characteristic polynomial $\chi_{\rm A}$

Matrix A has eigenvector $v \neq 0$ with eigenvalue λ if

 $Av = \lambda v$

Consequences

- $A^n v = \lambda^n v$
- $|\mathbf{A}^n \mathbf{v}| = |\lambda|^n |\mathbf{v}|$
- if $|\lambda| > 1$ then A^n grows exponentially

Theorem

 $A^n \in \mathcal{O}(n^d)$ if and only if $|\lambda| \leq 1$ and $|\lambda| = 1 \longrightarrow max$ -size (Jordan Blocks λ) $\leq d + 1$ for all eigenvalues λ of A

Remark

- λ is eigenvalue of \mathbf{A} if and only if
 - λ is root of characteristic polynomial $\chi_{\rm A}$

Old certification algorithm for $A^n \in \mathcal{O}(n^d)$

Input: Matrix A and degree d

Output: Accept or assertion failure

- **1** Compute all eigenvalues $\lambda_1, \ldots, \lambda_n$ of A (all complex roots of χ_A)
- 2 Compute spectral radius $\rho_A := \max_i |\lambda_i|$
- **3** Assert $\rho_A \leq 1$
- ④ For each λ_i with $|\lambda_i| = 1$, and Jordan block of A and λ_i with size s_i , assert $s_i \leq d+1$

6 Accept

Example of linear growth

Input: Matrix *A* and degree *d* Output: Accept or assertion failure

- Compute all eigenvalues $\lambda_1, \ldots, \lambda_n$ of A (all complex roots of χ_A)
- 2 Compute spectral radius $\rho_A := \max_i |\lambda_i|$
- **3** Assert $\rho_A \leq 1$
- For each λ_i with $|\lambda_i| = 1$, and Jordan block of A and λ_i with size s_i , assert $s_i \leq d + 1$
- 6 Accept

Input:
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}, d = 1$$

1. $\lambda_1 = 1, \lambda_2 = 0$
2. $\rho_A = 1$
4. $s_1 = 2 \leqslant d + 1$

Another example

Input:
$$A = \frac{1}{2} \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$

1. $\chi_A = \frac{(x-1)(8x^3 - 4x^2 - 2x - 1)}{8}$
 $\lambda_1 = 1$
 $\lambda_2 = (\text{root #1 of } f_1)$
 $\lambda_3 = (\text{root #1 of } f_2) + (\text{root #1 of } f_3)\text{i}$
 $\lambda_4 = (\text{root #1 of } f_2) + (\text{root #2 of } f_3)\text{i}$
 $f_1 = 8x^3 - 4x^2 - 2x - 1$
 $f_2 = 32x^3 - 16x^2 + 1$
 $f_3 = 1024x^6 + 512x^4 + 64x^2 - 11$

The problem and its solution

- old algorithm requires precise calculations ($|\lambda_i| = 1$)
- precise calculations are possible with algebraic numbers, but expensive
- aim: avoid explicit computation of eigenvalues
- solution: apply the Perron–Frobenius theorem

Perron-Frobenius, Part 1

Theorem (Perron-Frobenius)

Let A be a non-negative real matrix

• ρ_A is an eigenvalue of A

Consequence

1.5

Perron-Frobenius, Part 2

Theorem (Perron-Frobenius)

Let A be a non-negative real and irreducible matrix

- ρ_A is an eigenvalue of A
- ρ_A has multiplicity 1
- ρ_A is only eigenvalue with non-negative real eigenvector
- $\exists f k. \ \chi_A = f \cdot (x^k \rho_A^k) \land (f(y) = \mathbf{0} \longrightarrow |y| < \rho_A)$

Perron-Frobenius, Part 2

Theorem (Perron-Frobenius)

Let A be a non-negative real and irreducible matrix

- ρ_A is an eigenvalue of A
- ρ_A has multiplicity 1
- ρ_A is only eigenvalue with non-negative real eigenvector

•
$$\exists f k. \ \chi_A = f \cdot (x^k - \rho_A^k) \land (f(y) = 0 \longrightarrow |y| < \rho_A)$$

Consequences

- non-negative real and irreducible matrices have constant or exponential growth
- complexity proofs with irreducible matrices cannot prove runtime/derivational complexity O(n^d) for d > 1

Perron–Frobenius, Part 3

Theorem

Let A be a non-negative real matrix

- ρ_A is an eigenvalue of A
- $\exists f K. \ \chi_A = f \cdot \prod_{k \in K} (x^k \rho_A^k) \land (f(y) = 0 \longrightarrow |y| < \rho_A)$

Consequence

Uniqueness of f and K

Theorem

Let A be a non-negative real matrix

- *ρ*_A is an eigenvalue of A
- $\exists ! f K. \ \chi_A = f \cdot \prod_{k \in K} (x^k \rho_A^k) \land (f(y) = 0 \longrightarrow |y| < \rho_A)$
- decompose χ_A computes f and K for $\rho_A = 1$

New certification algorithm for $A^n \in \mathcal{O}(n^d)$

$$\exists ! f \mathcal{K}. \ \chi_{\mathcal{A}} = f \cdot \prod_{k \in \mathcal{K}} (x^k - \rho_{\mathcal{A}}^k) \land (f(y) = \mathbf{0} \longrightarrow |y| < \rho_{\mathcal{A}})$$

Input: non-negative real matrix A and degree d Output: Accept or assertion failure.

- **1** Assert that χ_A has no real roots in $(1,\infty)$ via Sturm's method
- 2 Compute K via decompose χ_A
- **3** For each $k \in \{1, \ldots, \max K\}$ do
 - *m_k* := |{*k*' ∈ *K*. *k* divides *k*'}|
 - If $m_k > d + 1$ then check Jordan blocks for all primitive roots of unity of degree k, i.e., assert Jordan block size $\leq d + 1$

Experiments

large examples (dim A = 21)

- old: timeouts after 1 hour
- new: finished in fraction of second

matrices of termination competitions 2015–2018 (2 $\leq dim A \leq 5$)

new algorithm 5x faster

Unpublished new certification algorithm for $A^n \in \mathcal{O}(n^d)$

New Theorem

If A is non-negative real matrix and $\rho_A \leq 1$ then for every JB with $|\lambda| = 1$ there exists JB of 1 which is at least as large

Unpublished new certification algorithm for $A^n \in \mathcal{O}(n^d)$

New Theorem

If *A* is non-negative real matrix and $\rho_A \leq 1$ then for every JB with $|\lambda| = 1$ there exists JB of 1 which is at least as large

Consequence

Unpublished new certification algorithm for $A^n \in \mathcal{O}(n^d)$

New Theorem

If *A* is non-negative real matrix and $\rho_A \leq 1$ then for every JB with $|\lambda| = 1$ there exists JB of 1 which is at least as large

Input: non-negative real matrix A and degree d Output: Accept or assertion failure

- **1** Assert that χ_A has no real roots in $(1,\infty)$ via Sturm's method
- ② Assert that each Jordan block of eigenvalue 1 has size $s \leqslant d+1$
- Accept

certifying matrix growth for complexity proofs without algebraic numbers

Improvements in Automation

- new certification algorithm runs in polynomial time
- \implies there exists polynomial time SAT/SMT-encoding
- \implies possibility to encode desired degree when searching for matrix interpretation
 - currently investigated by TCT-team

Part of Paper Proof

Definitions

$$X := \{x \in \mathbb{R}^n \mid x \ge 0, x \ne 0\}$$
$$X_1 := \{x \in X \mid ||x|| = 1\}$$
$$Y := \{(A + I)^n x \mid x \in X_1\}$$
$$r(x) := \min_{j, x_j \ne 0} \frac{(Ax)_j}{x_j}$$
$$r_{max} := \max\{r(y) \mid y \in Y\}$$

Lemmas

- X₁ and Y are compact
- *r* is continuous on *Y*
- r_{max} is well-defined (extreme value theorem)
- $r_{max} = \rho_A$
- $\chi'_A(\rho_A) = \sum_i \chi_{B_i}(\rho_A) > 0$ where B_i = mat-delete A *i i*

Overview on Formalization

- HMA: Type-based vectors and matrices (ι :: finite $\rightarrow \alpha$)
- JNF: Carrier-based vectors and matrices ($\mathbb{N} imes (\mathbb{N} o lpha)$)

	HMA library	JNF library
compatible dimensions	type-system	explicit carrier
arithmetic, determinants,	1	\checkmark
continuity, compactness,	\checkmark	
block-matrices, delete row,		✓

- formalization of Perron–Frobenius requires all features
- \implies develop connection between both worlds: HMA connect

Overview of Formalization

HMA Connect

- main aim: establish connection between JNF and HMA
- tool: transfer
 - define correspondence-relation between vectors, matrices, ...

 $HMA_{vec} :: \mathbb{N} \times (\mathbb{N} \to \alpha) \to (\iota \to \alpha) \to \text{bool}$ $HMA_{vec} \lor w = (\lor = (CARD(\iota), \lambda i.w_{\text{from-nat}} i))$

where from-nat is some bijection between ι and $\{0, \ldots, CARD(\iota) - 1\} \subseteq \mathbb{N}$

prove transfer rules between constants of JNF and HMA

 $(HMA_{mat} \longrightarrow HMA_{mat} \longrightarrow HMA_{mat}) \text{ op } + \text{ op } + (HMA_{mat} \longrightarrow \text{ op } =) \text{ det det}$

finally transfer complex statements between JNF and HMA

Transferring Theorems from JNF to HMA

- JNF lemma for derivative of characteristic polynomial $A \in \text{carrier-mat } n \longrightarrow$ pderiv (charpoly A) = $\sum_{i \leq n}$ charpoly (mat-delete A i i)
- transfer to HMA not yet possible: mat-delete not available
- solution: reformulate lemma

 $A \in \text{carrier-mat } n n \longrightarrow \text{monom } 1 1 *$ pderiv (charpoly A) = $\sum_{i < n}$ charpoly (mat-erase A i i)

transfer to HMA

monom 1 1 * pderiv (charpoly A) = \sum_i charpoly (mat-erase A i i)

Transferring Theorems from HMA to JNF

- Perron–Frobenius Theorem Part 1 (HMA)
 real-non-neg-mat A → eigenvalue A (spectral-radius A)
- transfer to JNF

 $A \in \text{carrier-mat}(\text{CARD}(\iota)) (\text{CARD}(\iota)) \longrightarrow$ real-non-neg-mat $A \longrightarrow$ eigenvalue A (spectral-radius A)

post-processing with local type definition

 $A \in \text{carrier-mat } n \ n \longrightarrow n \neq 0 \longrightarrow$ real-non-neg-mat $A \longrightarrow$ eigenvalue A (spectral-radius A)

Summary

- formalization of Perron–Frobenius theorem: combination of two libraries via transfer + local types
- new theorem: Jordan blocks of spectral radius are largest
- improving IsaFoR/CeTA: certifying complexity proofs without algebraic numbers

joint work with Jose Divasón, Sebastiaan Joosten, Ondřej Kunčar, and Akihisa Yamada

Future work / work in progress

Check termination proofs of programming languages

- formalize semantics of subset of LLVM IR in Isabelle (ongoing)
- verify translation to integer transition systems (future work)
- verify backend for integer transition systems
 - SMT-solver for LRA (basic solver available, ongoing)
 - bounds on integer solutions: LIA is in NP (unpublished)
 - theory-solver for LIA (ongoing)
 - SMT-solver for LIA (future work)