\square universität innsbruck

Improved Certification of Complexity Proofs for Term Rewrite Systems

René Thiemann
IFIP WG 1.6, Dortmund, June 26

Supported by the Austrian Science Fund (FWF) project Y757

Overview

- IsaFoR + CeTA:

Certifying Termination and Complexity Proofs

- Certifying Matrix Growth
- Formalization of the Perron-Frobenius Theorem

Annual International Termination Competition

Annual International Termination Competition

Annual International Termination Competition

Certification of Termination Proofs

automatic termination and complexity tools

- powerful, complex, unreliable
certifiers
- reliable, soundness proof in proof assistants
- revealed errors in tools and papers
- certified termination and complexity analysis

Certification of Termination Proofs

 automatic termination and complexity tools - powerful, complex, unreliable

certifiers

- reliable, soundness proof in proof assistants
- revealed errors in tools and papers
- certified termination and complexity analysis

- CeTA: certifier for termination, complexity, confluence, ..
- soundness of CeTA: Isabelle Formalization of Rewriting developed in collaboration with Christian Sternagel and
...

Certification of Termination Proofs

automatic termination and complexity tools

- powerful, complex, unreliable

certifiers

- reliable, soundness proof in proof assistants
- revealed errors in tools and papers
- certified termination and complexity analysis

- CeTA: certifier for termination, complexity, confluence, ..
- soundness of CeTA: Isabelle Formalization of Rewriting developed in collaboration with Christian Sternagel and
- this talk
improvements of IsaFoR/CeTA for complexity proofs

Complexity of Term Rewrite Systems

$$
\begin{array}{rlrl}
\operatorname{sort}(\operatorname{Cons}(x, x s)) & \rightarrow \operatorname{insort}(x, \operatorname{sort}(x s)) & & \\
\operatorname{sort}(\text { Nil }) & \rightarrow \operatorname{Nil} & & \\
\text { insort }(x, \operatorname{Cons}(y, y s)) & \rightarrow \operatorname{Cons}(x, \operatorname{Cons}(y, y s)) & \mid x \leqslant y \\
\text { insort }(x, \operatorname{Cons}(y, y s)) & \rightarrow \operatorname{Cons}(y, \operatorname{insort}(x, y s)) & \mid x \nless y \\
\operatorname{insort}(x, \text { Nil }) & \rightarrow \operatorname{Cons}(x, \text { Nil }) & &
\end{array}
$$

Aim: bound on maximal number of rewrite steps starting from

$$
\operatorname{sort}\left(\operatorname{Cons}\left(x_{1}, \ldots \operatorname{Cons}\left(x_{n}, \operatorname{Nil}\right)\right)\right)
$$

Running Automated Complexity tool

Running TCT on TRS yields $\mathcal{O}\left(n^{2}\right)+$ certificate

$$
\begin{aligned}
\llbracket \operatorname{sort} \rrbracket(x s) & =\left(\begin{array}{lll}
3 & 3 & 0 \\
0 & 0 & 1 \\
0 & 0 & 1
\end{array}\right) \cdot \llbracket x s \rrbracket \\
\llbracket \operatorname{insort} \rrbracket(x, x s) & =\left(\begin{array}{lll}
1 & 1 & 2 \\
0 & 0 & 1 \\
0 & 0 & 1
\end{array}\right) \cdot \llbracket x s \rrbracket+\left(\begin{array}{l}
2 \\
1 \\
2
\end{array}\right) \\
\llbracket \operatorname{Cons} \rrbracket(x, x s) & =\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 1
\end{array}\right)
\end{aligned} \llbracket x s \rrbracket+\left(\begin{array}{l}
0 \\
1 \\
2
\end{array}\right) .
$$

Certification - Step 1

- ensure termination: check strict decrease in every rewrite step
- for rewrite rule sort(Cons($x, x s)) \rightarrow \operatorname{insort}(x, \operatorname{sort}(x s))$ check

【sort(Cons($x, x s)) \rrbracket=$

$$
\begin{aligned}
\left(\begin{array}{lll}
3 & 3 & 3 \\
0 & 0 & 1 \\
0 & 0 & 1
\end{array}\right) \cdot \llbracket x s \rrbracket+\left(\begin{array}{l}
3 \\
2 \\
2
\end{array}\right) & \geq\left(\begin{array}{lll}
3 & 3 & 3 \\
0 & 0 & 1 \\
0 & 0 & 1
\end{array}\right) \cdot \llbracket x s \rrbracket+\left(\begin{array}{l}
2 \\
1 \\
2
\end{array}\right) \\
& =\llbracket \operatorname{insort}(x, \operatorname{sort}(x s)) \rrbracket
\end{aligned}
$$

Certification - Step 2

- bound initial interpretation

$$
\llbracket \operatorname{sort}\left(\operatorname{Cons}\left(x_{1}, \ldots \operatorname{Cons}\left(x_{n}, \operatorname{Nil}\right)\right)\right) \rrbracket=
$$

$$
\left(\begin{array}{lll}
3 & 3 & 0 \\
0 & 0 & 1 \\
0 & 0 & 1
\end{array}\right)\left(A^{n}\left(\begin{array}{l}
1 \\
0 \\
2
\end{array}\right)+\sum_{i<n} A^{i}\left(\begin{array}{l}
0 \\
1 \\
2
\end{array}\right)\right) \in \mathcal{O}\left(n \cdot A^{n}\right)
$$

\Longrightarrow key analysis: growth of values of A^{n} depending on n

Matrix Growth

- input: non-negative real matrix

$$
A=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 1
\end{array}\right)
$$

- task: decide matrix growth how large do values in A^{n} get for increasing n ?

Eigenvalues and eigenvectors

Matrix A has eigenvector $v \neq 0$ with eigenvalue λ if

$$
A v=\lambda v
$$

Consequences

- $A^{n} v=\lambda^{n} v$
- $\left|A^{n} v\right|=|\lambda|^{n}|v|$
- if $|\lambda|>1$ then A^{n} grows exponentially

Eigenvalues and eigenvectors

Matrix A has eigenvector $v \neq 0$ with eigenvalue λ if

$$
A v=\lambda v
$$

Consequences

- $A^{n} v=\lambda^{n} v$
- $\left|A^{n} v\right|=|\lambda|^{n}|v|$
- if $|\lambda|>1$ then A^{n} grows exponentially

Theorem

A^{n} grows polynomially if and only if $|\lambda| \leqslant 1$
for all eigenvalues λ of A

Eigenvalues and eigenvectors

Matrix A has eigenvector $v \neq 0$ with eigenvalue λ if

$$
A v=\lambda v
$$

Consequences

- $A^{n} v=\lambda^{n} v$
- $\left|A^{n} v\right|=|\lambda|^{n}|v|$
- if $|\lambda|>1$ then A^{n} grows exponentially

Theorem

A^{n} grows polynomially if and only if
$|\lambda| \leqslant 1$
for all eigenvalues λ of A
Remark

- λ is eigenvalue of A if and only if
λ is root of characteristic polynomial χ_{A}

Eigenvalues and eigenvectors

Matrix A has eigenvector $v \neq 0$ with eigenvalue λ if

$$
A v=\lambda v
$$

Consequences

- $A^{n} v=\lambda^{n} v$
- $\left|A^{n} v\right|=|\lambda|^{n}|v|$
- if $|\lambda|>1$ then A^{n} grows exponentially

Theorem

$A^{n} \in \mathcal{O}\left(n^{d}\right)$ if and only if
$|\lambda| \leqslant 1$ and $|\lambda|=1 \longrightarrow$ max-size (Jordan Blocks λ) $\leqslant d+1$
for all eigenvalues λ of A
Remark

- λ is eigenvalue of A if and only if
λ is root of characteristic polynomial χ_{A}

Old certification algorithm for $A^{n} \in \mathcal{O}\left(n^{d}\right)$

Input: Matrix A and degree d
Output: Accept or assertion failure
(1) Compute all eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ of A (all complex roots of χ_{A})
(2) Compute spectral radius $\rho_{A}:=\max _{i}\left|\lambda_{i}\right|$
(3) Assert $\rho_{A} \leqslant 1$
(4) For each λ_{i} with $\left|\lambda_{i}\right|=1$, and Jordan block of A and λ_{i} with size s_{i}, assert $s_{i} \leqslant d+1$
(5) Accept

Example of linear growth

Input: Matrix A and degree d
Output: Accept or assertion failure
(1) Compute all eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ of A (all complex roots of χ_{A})
(2) Compute spectral radius $\rho_{A}:=\max _{i}\left|\lambda_{i}\right|$
(3) Assert $\rho_{A} \leqslant 1$
(4) For each λ_{i} with $\left|\lambda_{i}\right|=1$, and Jordan block of A and λ_{i} with size s_{i}, assert $s_{i} \leqslant d+1$
(5) Accept

$$
\begin{aligned}
& \text { Input: } A=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 1
\end{array}\right), d=1 \\
& \text { 1. } \lambda_{1}=1, \lambda_{2}=0 \\
& \text { 2. } \rho_{A}=1 \\
& \text { 4. } s_{1}=2 \leqslant d+1
\end{aligned}
$$

Another example

$$
\text { Input: } \begin{aligned}
A & =\frac{1}{2}\left(\begin{array}{llll}
2 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1
\end{array}\right) \\
\text { 1. } \chi_{A} & =\frac{(x-1)\left(8 x^{3}-4 x^{2}-2 x-1\right)}{8} \\
\lambda_{1} & =1 \\
\lambda_{2} & =\left(\operatorname{root} \# 1 \text { of } f_{1}\right) \\
\lambda_{3} & =\left(\operatorname{root} \# 1 \text { of } f_{2}\right)+\left(\operatorname{root} \# 1 \text { of } f_{3}\right) \mathrm{i} \\
\lambda_{4} & =\left(\text { root \#1 of } f_{2}\right)+\left(\operatorname{root} \# 2 \text { of } f_{3}\right) \mathrm{i} \\
f_{1} & =8 x^{3}-4 x^{2}-2 x-1 \\
f_{2} & =32 x^{3}-16 x^{2}+1 \\
f_{3} & =1024 x^{6}+512 x^{4}+64 x^{2}-11
\end{aligned}
$$

The problem and its solution

- old algorithm requires precise calculations ($\left|\lambda_{i}\right|=1$)
- precise calculations are possible with algebraic numbers, but expensive
- aim: avoid explicit computation of eigenvalues
- solution: apply the Perron-Frobenius theorem

Perron-Frobenius, Part 1

Theorem (Perron-Frobenius)

Let A be a non-negative real matrix

- ρ_{A} is an eigenvalue of A

Consequence

Perron-Frobenius, Part 2

Theorem (Perron-Frobenius)

Let A be a non-negative real and irreducible matrix

- ρ_{A} is an eigenvalue of A
- ρ_{A} has multiplicity 1
- ρ_{A} is only eigenvalue with non-negative real eigenvector
- $\exists f k \cdot \chi_{A}=f \cdot\left(x^{k}-\rho_{A}^{k}\right) \wedge\left(f(y)=0 \longrightarrow|y|<\rho_{A}\right)$
- ...

Perron-Frobenius, Part 2

Theorem (Perron-Frobenius)

Let A be a non-negative real and irreducible matrix

- ρ_{A} is an eigenvalue of A
- ρ_{A} has multiplicity 1
- ρ_{A} is only eigenvalue with non-negative real eigenvector
- $\exists f k \cdot \chi_{A}=f \cdot\left(x^{k}-\rho_{A}^{k}\right) \wedge\left(f(y)=0 \longrightarrow|y|<\rho_{A}\right)$
- . . .

Consequences

- non-negative real and irreducible matrices have constant or exponential growth
- complexity proofs with irreducible matrices cannot prove runtime/derivational complexity $\mathcal{O}\left(n^{d}\right)$ for $d>1$

Perron-Frobenius, Part 3

Theorem

Let A be a non-negative real matrix

- ρ_{A} is an eigenvalue of A
- $\exists f K \cdot \chi_{A}=f \cdot \prod_{k \in K}\left(x^{k}-\rho_{A}^{k}\right) \wedge\left(f(y)=0 \longrightarrow|y|<\rho_{A}\right)$

Consequence

Uniqueness of f and K

Theorem

Let A be a non-negative real matrix

- ρ_{A} is an eigenvalue of A
- $\exists!f K . \chi_{A}=f \cdot \prod_{k \in K}\left(x^{k}-\rho_{A}^{k}\right) \wedge\left(f(y)=0 \longrightarrow|y|<\rho_{A}\right)$
- decompose χ_{A} computes f and K for $\rho_{A}=1$

Consequence

New certification algorithm for $A^{n} \in \mathcal{O}\left(n^{d}\right)$

$$
\exists!f K \cdot \chi_{A}=f \cdot \prod_{k \in K}\left(x^{k}-\rho_{A}^{k}\right) \wedge\left(f(y)=0 \longrightarrow|y|<\rho_{A}\right)
$$

Input: non-negative real matrix A and degree d
Output: Accept or assertion failure.
(1) Assert that χ_{A} has no real roots in $(1, \infty)$ via Sturm's method
(2) Compute K via decompose χ_{A}
(3) For each $k \in\{1, \ldots, \max K\}$ do

- $m_{k}:=\mid\left\{k^{\prime} \in K . k\right.$ divides $\left.k^{\prime}\right\} \mid$
- If $m_{k}>d+1$ then check Jordan blocks for all primitive roots of unity of degree k, i.e., assert Jordan block size $\leqslant d+1$
(4) Accept

Experiments

large examples $(\operatorname{dim} A=21)$

- old: timeouts after 1 hour
- new: finished in fraction of second
matrices of termination competitions 2015-2018
$(2 \leqslant \operatorname{dim} A \leqslant 5)$
- new algorithm $5 x$ faster

Unpublished new certification algorithm

 for $A^{n} \in \mathcal{O}\left(n^{d}\right)$
New Theorem

If A is non-negative real matrix and $\rho_{A} \leqslant 1$ then for every JB with $|\lambda|=1$ there exists JB of 1 which is at least as large

Unpublished new certification algorithm for $A^{n} \in \mathcal{O}\left(n^{d}\right)$

New Theorem

If A is non-negative real matrix and $\rho_{A} \leqslant 1$ then for every JB with $|\lambda|=1$ there exists JB of 1 which is at least as large

Consequence

Unpublished new certification algorithm for $A^{n} \in \mathcal{O}\left(n^{d}\right)$

New Theorem

If A is non-negative real matrix and $\rho_{A} \leqslant 1$ then for every JB with $|\lambda|=1$ there exists JB of 1 which is at least as large

Input: non-negative real matrix A and degree d Output: Accept or assertion failure
(1) Assert that χ_{A} has no real roots in $(1, \infty)$ via Sturm's method
(2) Assert that each Jordan block of eigenvalue 1 has size $s \leqslant d+1$
(3) Accept
certifying matrix growth for complexity proofs without algebraic numbers

Improvements in Automation

- new certification algorithm runs in polynomial time
\Longrightarrow there exists polynomial time SAT/SMT-encoding
\Longrightarrow possibility to encode desired degree when searching for matrix interpretation
- currently investigated by TCT-team

Part of Paper Proof

Definitions

$$
\begin{aligned}
X & :=\left\{x \in \mathbb{R}^{n} \mid x \geq 0, x \neq 0\right\} \\
X_{1} & :=\{x \in X \mid\|x\|=1\} \\
Y & :=\left\{(A+I)^{n} x \mid x \in X_{1}\right\} \\
r(x) & :=\min _{j, x_{j} \neq 0} \frac{(A x)_{j}}{x_{j}} \\
r_{\max } & :=\max \{r(y) \mid y \in Y\}
\end{aligned}
$$

Lemmas

- X_{1} and Y are compact
- r is continuous on Y
- $r_{\text {max }}$ is well-defined (extreme value theorem)
- $r_{\text {max }}=\rho_{A}$
- $\chi_{A}^{\prime}\left(\rho_{A}\right)=\sum_{i} \chi_{B_{i}}\left(\rho_{A}\right)>0$ where $B_{i}=$ mat-delete $A i i$

Overview on Formalization

- HMA: Type-based vectors and matrices ($\iota::$ finite $\rightarrow \alpha$)
- JNF: Carrier-based vectors and matrices $(\mathbb{N} \times(\mathbb{N} \rightarrow \alpha))$

	HMA library	JNF library
compatible dimensions	type-system	explicit carrier
arithmetic, determinants, ...	\checkmark	\checkmark
continuity, compactness, ...	\checkmark	
block-matrices, delete row,...		\checkmark

- formalization of Perron-Frobenius requires all features
\Longrightarrow develop connection between both worlds: HMA connect

Overview of Formalization

Perron-Frobenius
formalization
libraries HMA and JNF

Part 1
ρ_{A} is eigenvalue

HMA Connect

- main aim: establish connection between JNF and HMA
- tool: transfer
- define correspondence-relation between vectors, matrices, ...

$$
\begin{aligned}
& H M A_{\text {vec }}:: \mathbb{N} \times(\mathbb{N} \rightarrow \alpha) \rightarrow(\iota \rightarrow \alpha) \rightarrow \text { bool } \\
& \text { HMA }_{\text {vec }} \vee w=\left(v=\left(\operatorname{CARD}(\iota), \lambda i . w_{\text {from-nat }} i\right)\right)
\end{aligned}
$$

where from-nat is some bijection between ι and $\{0, \ldots, \operatorname{CARD}(\iota)-1\} \subseteq \mathbb{N}$

- prove transfer rules between constants of JNF and HMA

$$
\begin{aligned}
& \left(H M A_{\text {mat }} \longrightarrow H M A_{\text {mat }} \longrightarrow H M A_{\text {mat }}\right) \mathrm{op}+\mathrm{op}+ \\
& \left(H M A_{\text {mat }} \longrightarrow \mathrm{op}=\right) \operatorname{det} \operatorname{det}
\end{aligned}
$$

- finally transfer complex statements between JNF and HMA

Transferring Theorems from JNF to HMA

- JNF lemma for derivative of characteristic polynomial

$$
A \in \text { carrier-mat } n n \longrightarrow
$$

pderiv $($ charpoly $A)=\sum_{i<n}$ charpoly (mat-delete A $\left.i i\right)$

- transfer to HMA not yet possible: mat-delete not available
- solution: reformulate lemma

$$
\begin{gathered}
A \in \text { carrier-mat } n n \longrightarrow \text { monom } 11 * \\
\text { pderiv }(\text { charpoly } A)=\sum_{i<n} \text { charpoly (mat-erase A } i \text { i) }
\end{gathered}
$$

- transfer to HMA

$$
\begin{gathered}
\text { monom } 11 * \text { pderiv }(\text { charpoly } A)= \\
\sum_{i} \text { charpoly }(\text { mat-erase } A i i)
\end{gathered}
$$

Transferring Theorems from HMA to JNF

- Perron-Frobenius Theorem Part 1 (HMA)
real-non-neg-mat $A \longrightarrow$ eigenvalue A (spectral-radius A)
- transfer to JNF
$A \in$ carrier-mat $(\operatorname{CARD}(\iota))(\operatorname{CARD}(\iota)) \longrightarrow$
real-non-neg-mat $A \longrightarrow$ eigenvalue A (spectral-radius A)
- post-processing with local type definition
$A \in$ carrier-mat $n n \longrightarrow n \neq 0 \longrightarrow$
real-non-neg-mat $A \longrightarrow$ eigenvalue A (spectral-radius A)

Summary

- formalization of Perron-Frobenius theorem: combination of two libraries via transfer + local types
- new theorem: Jordan blocks of spectral radius are largest
- improving IsaFoR/CeTA:
certifying complexity proofs without algebraic numbers
joint work with Jose Divasón, Sebastiaan Joosten, Ondřej Kunčar, and Akihisa Yamada

Future work / work in progress

Check termination proofs of programming languages

- formalize semantics of subset of LLVM IR in Isabelle (ongoing)
- verify translation to integer transition systems (future work)
- verify backend for integer transition systems
- SMT-solver for LRA (basic solver available, ongoing)
- bounds on integer solutions: LIA is in NP (unpublished)
- theory-solver for LIA (ongoing)
- SMT-solver for LIA (future work)

