
ATLAS: Automated Amortised Complexity
Analysis of Self-Adjusting Data Structures

Lorenz Leutgeb2, Georg Moser1, and Florian Zuleger2

1 Department of Computer Science, Universität Innsbruck
2 Institute of Logic and Computation 192/4, Technische Universität Wien

Abstract. Being able to argue about the performance of self-adjusting
data structures such as splay trees has been a main objective, when
Sleator and Tarjan introduced the notion of amortised complexity.
Analysing these data structures requires sophisticated potential func-
tions, which typically contain logarithmic expressions. Possibly for these
reasons, and despite the recent progress in automated resource analy-
sis, they have so far eluded automation. In this paper, we report on
the first fully-automated amortised complexity analysis of self-adjusting
data structures. Following earlier work, our analysis is based on potential
function templates with unknown coefficients.
We make the following contributions: 1) We encode the search for con-
crete potential function coefficients as an optimisation problem over a
suitable constraint system. Our target function steers the search towards
coefficients that minimise the inferred amortised complexity. 2) Automa-
tion is achieved by using a linear constraint system in conjunction with
suitable lemmata schemes that encapsulate the required non-linear facts
about the logarithm. We discuss our choices that achieve a scalable anal-
ysis. 3) We present our tool ATLAS and report on experimental results
for splay trees, splay heaps and pairing heaps. We completely automati-
cally infer complexity estimates that match previous results (obtained by
sophisticated pen-and-paper proofs), and in some cases even infer better
complexity estimates than previously published.

Keywords: amortised cost analysis · functional programming · self-
adjusting data structures · automation · constraint solving

1 Introduction

Amortised analysis, as introduced by Sleator and Tarjan [47, 49], is a method
for the worst-case cost analysis of data structures. The innovation of amortised
analysis lies in considering the cost of a single data structure operation as part of
a sequence of data structure operations. The methodology of amortised analysis
allows one to assign a low (e.g., constant or logarithmic) amortised cost to a
data structure operation even though the worst-case cost of a single operation
might be high (e.g., linear, polynomial or worse). The setup of amortised analysis
guarantees that for a sequence of data structure operations the worst-case cost
is indeed the number of data structure operations times the amortised cost.
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In this way amortised cost analysis provides a methodology for worst-case cost
analysis. Notably, the cost analysis of self-adjusting data structures, such as
splay trees, has been a main objective already in the initial proposal of amortised
analysis [47,49]. Analysing these data structures requires sophisticated potential
functions, which typically contain logarithmic expressions. Possibly for these
reasons, and despite the recent progress in automated complexity analysis, they
have so far eluded automation.

In this paper, we present the first fully-automated amortised cost analysis
of self-adjusting data structures, that is, of splay trees, splay heaps and pair-
ing heaps, which so far have only (semi-) manually been analysed in the lit-
erature. We implement and extend a recently proposed type-and-effect system
for amortised resource analysis [26, 27]. This system belongs to a line of work
(see [20,22–25,28] and the references therein), where types are template poten-
tial functions with unknown coefficients and the type-and-effect system extracts
constraints over these coefficients in a syntax directed way from the program
under analysis. Our work improves over [26, 27] in three regards: 1) The ap-
proach of [26, 27] only supports type checking, i.e. verifying that a manually
provided type is correct. In this paper, we add an optimisation layer to the
set-up of [26, 27] in order to support type inference, i.e. our approach does not
rely on manual annotations. Our target function steers the search towards coef-
ficients that minimise the inferred amortised complexity. 2) The only case study
of [26,27] is partial, focusing on the zig-zig case of the splay tree function splay,
while we report on the full analysis of the operations of several data structures.
3) [26, 27] does not report on a fully-automated analysis. Besides the require-
ment that the user needs to provide the resource annotation, the user also has
to apply the structural rules of the type system manually. Our tool ATLAS is
able to analyse our benchmarks fully automatically. Achieving full automation
required substantial implementation effort as the structural rules need to be ap-
plied carefully—as we learned during our experiments—in order to avoid a size
explosion of the generated constraint system. We evaluate and discuss our design
choices that lead to a scalable implementation.

With our implementation and the obtained experimental results we make
two contributions to the complexity analysis of data structures:

1.) We automatically infer complexity estimates that match previous results
(obtained by sophisticated pen-and-paper proofs), and in some cases even infer
better complexity estimates than previously published. In Table 1, we state the
complexity bounds computed by ATLAS next to results from the literature. We
match or improve the results from [37, 41, 42]. To the best of our knowledge,
the bounds for splay trees and splay heaps represent the state-of-the-art. In
particular, we improve the bound for the delete function of splay trees and all
bounds for the splay heap functions. For pairing heaps, Iacono [29,30] has proven
(using a more involved potential function) that insert and merge have constant
amortised complexity, while the other data structure operations continue to have
an amortised complexity of k log2(|t|); while we leave an automated analysis
based on Iacono’s potential function for future work, we note that his coefficients
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function name ATLAS (automated) [42] (manual)3 [37] (semi-automated)

ST.splay 3/2 log2(|t|) 3/2 log2(|t|) + 1 3/2 log2(|t|) + 1
ST.splay max 3/2 log2(|t|) 3/2 log2(|t|) + 1
ST.insert 2 log2(|t|) + 3/2 2 log2(|t|+ 1) +O(1) 2 log2(|t|) + 3/2
ST.delete 5/2 log2(|t|) + 3 3 log2(|t|+ 1) +O(1) 3 log2(|t|) + 2

SH.partition 3/4 log2(|t|)+ 2 log2(|t|+ 1) + 1
log2(|t|+ 1)

SH.insert 3/4 log2(|t|)+ 3 log2(|t|+ 2) + 1
log2(|t|+ 1) + 3/2

SH.del min log2(|t|) 2 log2(|t|+ 1) + 1

PH.merge pairs 3/2 log2(|h|) 3 log2(|h|) + 4
PH.insert 1/2 log2(|h|) log2(|h|+ 1) + 1
PH.merge 1/2 log2(|h1|+ |h2|) + 1 1/2 log2(|h1|+ |h2|) log2(|h1|+ |h2|+ 1) + 2
PH.del min log2(|h|) log2(|h|) 3 log2(|h|+ 1) + 4

Table 1: Amortised complexity bounds for splay trees (module name SplayTree,
abbrev. ST), splay heaps (SplayHeap, SH) and pairing heaps (PairingHeap, PH).

k in the logarithmic terms are large, and that therefore the small coefficients in
Table 1 are still of interest. We will detail below that we used a simpler potential
function than [37,41,42] to obtain our results. Hence, also the new proofs of the
confirmed complexity bounds can be considered a contribution.

2.) We establish a new approach for the complexity analysis of data struc-
tures. Establishing the prior results in Table 1 required considerable effort.
Schoenmakers studied in his PhD thesis [42] the best amortised complexity
bounds that can be obtained using a parameterised potential function φ(t), where
t is a binary tree, defined by φ(leaf) := 0 and φ((l, d, r)) := φ(l)+β logα(|l|+
|r|) + φ(r), for real-valued parameters α, β > 0. Carrying out a sophisticated
optimisation with pen and paper, he concluded that the best bounds are ob-
tained by setting α = 3

√
4 and β = 1

3 for splay trees, and by setting α =
√

2
and β = 1

2 for pairing heaps (splay heaps were proposed only some years later
by Okasaki in [38]). Brinkop and Nipkow verify his complexity results for splay
trees in the theorem prover Isabelle [37]. They note that manipulating the ex-
pressions corresponding to β logα(|t|) could only partly be automated 4. For
splay heaps, there is to the best of our knowledge no previous attempt to opti-
mise the obtained complexity bounds, which might explain why our optimising
analysis was able to improve all bounds. For pairing heaps, Brinkop and Nip-
kow did not use the optimal parameters reported by Schoenmakers—probably
in order to avoid reasoning about polynomial inequalities—, which explains the

1 [42] uses a different cost metric, i.e. the numbers of arithmetic comparisons, whereas
we and [37] count the number of (recursive) function applications. We adapted the
results of [42] to our cost metric to make the results easier to compare, i.e. the
coefficients of the logarithmic terms are by a factor 2 smaller compared to [42].

4 Nipkow et al. [37] state “The proofs in this subsection require highly nonlinear arith-
metic. Only some of the polynomial inequalities can be automated with Harrison’s
sum-of-squares method [16].”
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worse complexity bounds. In contrast to the discussed approaches, we were able
to verify and improve the previous results fully automatically. Our approach uses
a variation of Schoenmakers’ potential function, where we roughly fix α = 2 and
leave β as a parameter for the optimisation phase (see Section 2 for more de-
tails). Despite this choice, our approach was able to derive bounds that match
and improve the previous results, which came as a surprise to us. Looking back
at our experiments and interpreting the obtained results, we recognise that we
might have been in luck with the particular choice of the potential function
(because we can obtain the previous results despite fixing α = 2). However,
we would not have expected that an automated analysis is able to match and
improve all previously reported coefficients, which shows the power of the op-
timisation phase. Thus, we believe that our results suggest a new approach for
the complexity analysis of data structures. So far, self-adjusting data structures
had to be analysed manually. This is possibly due to the use of sophisticated
potential functions, which may contain logarithmic expressions. Both features
are challenging for automated reasoning. Our results suggest that the following
alternative (see Sections 2 and 4.2 for more details): (i) Fix a parameterised
potential function; (ii) derive a (linear) constraint system over the function pa-
rameters from the AST of the program; (iii) capture the required non-linear
reasoning in lemmata, and use Farkas’ lemma to integrate the application of
these lemmata into the constraint system (in our case two lemmata, one about
an arithmetic property and one about the monotonicity of the logarithm, were
sufficient for all of our benchmarks); and finally (iv) find values for the parame-
ters by an (optimising) constraint solver. We believe that our approach will carry
over to other data structures: one needs to adapt the potential functions and add
suitable lemmata, but the overall setup will be the same. We compare the pro-
posed methodology to program synthesis by sketching [48], where the synthesis
engineer communicates her main insights to the synthesis engine (in our case
the potential functions plus suitable lemmata), and a constraint solver then fills
in the details. As conclusion from our benchmarking, we observe that an auto-
mated analysis of sophisticated data structures are possible without the need to
(i) resort to user guidance; (ii) forfeit optimal results; or (iii) be bogged down in
computation times. These results also show how dependencies on properties of
functional correctness of the code can be circumvented.

Related Work. To the best of our knowledge the here presented automated amor-
tised analysis of self-adjusting data-structures is novel and unparalleled in the
literature. However, there is a vast amount of literature on (automated) resource
analysis. Without hope for a completeness, we briefly mention [1–7,9–11,14,15,
17,18,20,22–25,39,44–46,52] for an overview of the field. Logarithmic and sub-
linear bounds are typically not in the focus of the cited approaches, but can
be inferred by some tools. In the recurrence relations based approach to cost
analysis [1] refinements of linear ranking functions are combined with criteria
for divide-and-conquer patterns; this allows the tool PUBS to recognise logarith-
mic bounds for some problems, but examples such as mergesort or splaying are
beyond the scope of this approach. Logarithmic and exponential terms are inte-
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grated into the synthesis of ranking functions in [8], making use of an insightful
adaption of Farkas’ and Handelman’s lemmas. The approach is able to handle
examples such as mergesort, but again not suitable to handle self-balancing data
structures. A type based approach to cost analysis for an ML-like language is
presented in [50], which uses the Master Theorem to handle divide-and-conquer-
like recurrences. Recently, support for the Master Theorem was also integrated
for the analysis of rewriting systems [51], extending [4] on the modular resource
analysis of rewriting to so-called logically constrained rewriting systems [12].
The resulting approach also supports the fully automated analysis of mergesort.

Structure. In Sections 2 and 3 we review the type system of [26,27]. We sketch the
challenges to automation in Section 4 and present our contributions in Sections 5
and 6. Finally, we conclude in Section 7.

2 Step by Step to an Automated Analysis of Splaying

In this and the next section we sketch the theory developed by Hofmann et
al. in [27], in order to be able to present the contributions of this article in
Section 4 and 5. For brevity, we restrict our exposition to those parts essential in
the analysis of a particular program code. As motivating example consider splay
trees, introduced by Sleator and Tarjan [47,49]. Splaying is the most important
operation on splay trees, which performs rotation. Consider Figure 1, a depiction
of the zig-zig case of splay, which implements splaying.

The analysis of [27] (see also [26]) is formulated in terms of the physicist’s
method of amortised analysis in the style of Sleator and Tarjan [47, 49]. The
central idea of this approach is to assign a potential to the data structures
of interest such that the difference in potential before and after executing a
function is sufficient to pay for the actual cost of the function, i.e. one chooses
potential functions φ, ψ such that φ(v) > cf (v) + ψ(f(v)) holds for all inputs v
to a function f , where cf (v) denotes the worst-case cost of executing function
f on v. This generalises the original formulation, which can be seen by setting
φ(v) := af (v) + ψ(v), where af (v) denotes the amortised cost of f .

In order to be able to analyse self-adjusting data structures such as splay
trees, one needs potential functions that can express logarithmic amortised cost.
Hofmann et al. [26, 27] propose to make use of a variant of Schoenmakers’ po-
tential, rk(t) for a tree t, cf. [37, 41,42], defined inductively by

rk(leaf) := 1 rk((l, d, r)) := rk(l) + log2(|l|) + log2(|r|) + rk(r) ,

where l, r are the left resp. right child of the tree (l, d, r), |t| denotes the size of a
tree (defined as the number of leaves of the tree), and d is some data element that
is ignored by the potential function. Besides Schoenmakers’ potential, further
basic potential functions need to be added to the analysis: For a sequence of m
trees t1, . . . , tm and coefficients ai, b ∈ N, the potential function

p(a1,...,am,b)(t1, . . . , tm) := log2(a1 · |t1|+ · · ·+ am · |tm|+ b)
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1 splay a t = match t with
2 | (cl, c, cr) -> match cl with
3 | (bl, b, br) -> let s = splay a bl in match s with
4 | (al, a’, ar) -> (al, a’, (ar, b, (br, c, cr)))

Fig. 1: Zig-zig case of the splay function.

denotes the logarithm of a linear combination of the sizes of the tree.
Following [37], we set the cost csplay(t) of splaying a tree t to be the number of

recursive calls to splay. Splaying and all operations that depend on splaying can
be done in O(log2 n) amortised cost. Employing the above introduced potential
functions, the analysis of [27] is able verify the following cost annotation for
splaying (the annotation needs to be provided by the user):

rk(t) + 3 · p(1,0)(t) + 1 > csplay(t) + rk(splay a t) . (1)

From this result, one directly reads off 3 · p(1,0)(t) + 1 = 3 · log2(|t|) + 1 as bound
on the amortised cost of splaying.5

Based on earlier work [6,20,22–25,28], [27] employs a type-and-effect system
that uses template potential functions, i.e. functions of a fixed shape with inde-
terminate coefficients. The key challenge is to identify templates that are suitable
for logarithmic analysis and that are closed under the basic operations of the
considered programming language. For example, one introduces the coefficients
q∗, q(1,0), q(0,2), q

′
∗, q
′
(1,0), q

′
(0,2) and introduces the potential function templates

Φ(t :T|Q) := q∗ · rk(t) + q(1,0) · p(1,0)(t) + q(0,2) · p(0,2)(t)
Φ(splay a t :T|Q′) := q′∗ · rk(splay a t) +

+ q′(1,0) · p(1,0)(splay a t) + q′(0,2) · p(0,2)(splay a t) ,

for the input and output of the splay function. The type system then derives
constraints on the template function coefficients, as indicated in the sequel. We
take up further discussion of the constraint system, in particular how to maintain
a scalable analysis, in Section 4.

We explain the use of the type system on the motivating example. For brevity,
type judgements and the type rules are presented in a simplified form. In par-
ticular, we restrict our attention to tree types, denoted as T. This omission is
inessential to the actual complexity analysis. For the full set of rules see [27].

Let e denote the body of the function definition of splay a t, depicted
in Figure 1. Our automated analysis infers an annotated type of splaying, by
verifying that the type judgement

t :T|Q ` e :T|Q′ , (2)

is derivable. As above, types are decorated with annotations Q := [q∗, q(1,0), q(0,2)]
and Q′ := [q′∗, q

′
(1,0), q

′
(0,2)]—employed to express the potential carried by the ar-

guments to splay and its results.

5 For ease of presentation, we elide the underlying semantics for now and simply write
“splay a t” for the resulting tree t′, obtained after evaluating splay a t.
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splay:T|Q→ T|Q′

bl :T|Q ` splay a bl :T|Q′ − 1
(app) ∆|R `cf splay a bl :T|R′

cr :T, br :T, s :T|Q4 ` match x with |(al,a′,ar) -> t′ :T|Q′

cr :T, bl :T, br :T|Q3 ` e′1 :T|Q′ (let : T)

cr :T, bl :T, br :T|Q2 ` e′1 :T|Q′ (w)

cl :T, cr :T|Q1 ` match cl with |(bl,b,br) -> e′1 :T|Q′ (match)

t :T|Q ` match t with|(cl,c,cr) -> e1 :T|Q′ (match)

Fig. 2: Partial Typing Derivation for the motivating example splay.

The soundness theorem of the type system (Theorem 1) expresses that if
the above type judgement is derivable, then the total cost csplay(t) of splay-
ing is bound by the difference between Φ(t :T|Q) and Φ(splay a t :T|Q′), i.e.
Φ(t :T|Q) > csplay(t) + Φ(splay a t :T|Q′). In particular, Equation (1) can be
derived in this way.

We now provide an intuition on the type-and-effect system, stepping through
the code of Figure 1. The corresponding type derivation tree is depicted in Fig-
ure 2. We note that the tree contains further annotations Q1, Q2, Q3, Q4 (besides
the annotations Q and Q′) which again represent the unknown coefficients of po-
tential function templates. The goal of the type-and-effect system is to provide
constraints for each programming construct that connect the annotations in sub-
sequent derivation steps, e.g. Q2 and Q3. The type-and-effect system operates
syntax-directed and formulates one rule per programming languages construct.
We now discuss some of these rules for the partial derivation for splay.

The outermost command of e is a match statement, for which the following
rule is applied:

cl :T, cr :T|Q1 ` e1 :T|Q′

t :T|Q ` match t with | (cl,c,cr) -> e1 :T|Q′
(match)

.

Here e1 denotes the subexpression of e, which constitutes the nested pattern
match. Primarily, this is a standard type rule for pattern matching. The novelty
are the constraints on the annotations Q, Q′ and Q1. More precisely, (match)
induces the constraints

q11 = q12 = q∗ q1(1,1,0) = q(1,0) q1(1,0,0) = q1(0,1,0) = q∗ q1(0,0,2) = q(0,2) ,

which can be directly read-off the definition of rk(t) = rk(cl) + log2(|cl|) +
log2(|cr|) + rk(cr). Similarly, the nested match command, starting expression e′1,
is subject to the same rule; the resulting constraints amount to

q21 = q22 = q23 q2(0,0,0,2) = q1(0,0,2) q2(1,1,1,0) = q1(1,1,0)

q2(0,1,1,0) = q1(1,0,0) q2(1,0,0,0) = q1(0,1,0) q2(0,1,0,0) = q2(0,0,1,0) = q11 .
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Besides the rules for programming language constructs, the type-and-effect
system contains structural rules, which operate on the type annotations them-
selves. The weakening rule allows a suitable adaptation of the coefficients of the
potential function Φ(Γ |Q2) to obtain a new potential function Φ(Γ |Q3), where
we use the shorthand Γ := cr :T, bl :T, br :T:

Γ |Q3 ` e′1 :T|Q′ Φ(Γ |Q2) > Φ(Γ |Q3)

Γ |Q2 ` e′1 :T|Q′
(w)

The difficulty in applying the weakening rule, consists in discharging the
constraint:

Φ(Γ |Q2) > Φ(Γ |Q3) (3)

Note, that the comparison is to be performed symbolically, that is, abstracted
from the concrete value of the variables. We emphasise that this step can neither
be avoided, nor easily moved to the axioms of the derivation, as in related ap-
proaches in the literature [19,21–23,28,31,35]. We use Farkas’ Lemma in conjunc-
tion with two facts about the logarithm to linearise this symbolic comparison,
namely the monotonicity of the logarithm and the fact that 2+log2(x)+log2(y) 6
2 log2(x+y) for all x, y > 1. For example, for the facts log2(|bl|) ≤ log2(|bl|+|br|)
and 2+log2(|bl|)+log2(|cr|+|br|) ≤ 2 log2(|cr|+|bl|+|br|), we use Farkas’ Lemma
to generate the constraints

q2(0,0,0,2) + 2f > q3(0,0,0,2)

q2(1,0,1,0) + f > q3(1,0,1,0)

q2(1,1,1,0) − 2f > q3(1,1,1,0)

q2(0,1,0,0) + f + g > q3(0,1,0,0)

q2(0,1,1,0) − g > q3(0,1,1,0)

for some coefficients f, g > 0 introduced by Farkas’ Lemma. We note that Farkas’
Lemma can be interpreted as systematically exploring all positive-linear com-
binations of the considered mathematical facts. This can be seen on the above
example: one can combine g times the first fact with f times the second fact.

Next, we apply the rule for the let expression. This rule is the most involved
typing rule in the system proposed by Hofmann et al. [27].

∆|Q ` e2 :T|Q′ − 1 ∆|R `cf e2 :T|R′ Θ|Q4 ` e3 :T|Q′

cr :T, bl :T, br :T|Q3 ` let s = e2 in e3 :T|Q′
(let : T)

Ignoring the annotations and in particular the second premise for a moment,
the type rule specifies a standard typing for a let expression. We note that,
as required by the rule, all variables in the type context Γ occur at most once
in the let-expression. Γ can then be split into contexts ∆ := bl :T and Θ :=
cr :T, br :T. Here, e2 := splay a bl and e3 denotes the last match statement
in e. The let-rule facilitates a splitting of the potential Q3 for the evaluation
of e2 and e3 according to the type contexts ∆ and Θ. Abusing notation, the
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distribution of potentials facilitated by the let-rule can be stated very roughly
as two “equalities”, that is, (i) “Q3 = Q+R+P” and (ii) “Q4 = (Q′−1)+R′+P”.
(i) states that the potential Q3 pays for evaluating the let expression e2 (with
and without costs, requiring the potential Q and R) and leaves the remainder
potential P . (ii) states that the potential Q4 is constituted of the remainder
potential P and of the potentials left after evaluating e2 (with and without
costs, i.e. potentials Q′−1 and R′). E.g. Q4 is given by the following constraints

q41 = q31 q43 = q′∗ q4(1,0,0,0) = q3(1,0,0,0) q4(1,1,1,0) = r′(1,0)

q42 = q33 q4(0,1,0,0) = q3(0,0,1,0) q4(1,1,0,0) = q3(1,0,1,0) ,

where the coefficients q3 stem from the remainder potential of Q3, the coefficient
q′∗ from Q′ − 1 and r′(1,0) from R′.

The most original part of this type rule is the second premise ∆|R `cf
splay a bl :T|R′. Here, `cf denotes the same kind of typing judgement as used
in the overall typing derivation, but where all costs are set to zero (hence, the
superscript cost-free). Let us assume R = [r(1,0)], R

′ = [r′(1,0)], and that ATLAS
was able to establish that

Φ(bl :T|R) = log2(|bl|) > log2(|s|) = Φ(s :T|R′) , (4)

establishing the coefficients r(1,0) = 1 and r′(1,0) = 1. (We note that cost-free
typing derivations as in Equation (4) constitute a size analysis that relates the
sizes of input and output). Then, ATLAS infers from (4), taking advantage of
the monotonicity of log, that

log2(|cr|+ |bl|+ |br|) > log2(|cr|+ |br|+ |s|) .

This inequality expresses that if the summand log2(|cr|+|bl|+|br|) is included in
the potential Φ(Γ |Q3), then the summand log2(|cr|+ |br|+ |s|) may be included
in the potential Φ(cr :T, br :T, s :T|Q4). (The two logarithmic terms correspond
to the coefficients q3(1,1,1,0) and q4(1,1,1,0) marked in red above.) Thus, the cost-free

derivation allows the potential R to pass from Q3, via R′, to Q4. This is crucial
for being able to pay for the evaluation of e3.

The let-rule has the three premises ∆|Q ` e2 :T|Q′ − 1, ∆|R `cf e2 :T|R′
and Θ|Q4 ` e3 :T|Q′. We focus here on the first premise and do not state the
derivations for the other two premises (such derivations can be found in [27]). The
judgement ∆|Q ` splay a t :T|Q′ − 1 can be derived by the rule for function
application, which states a cost of 1 with regard to the type signature of splay,
represented by decrementing the potential induced by the annotation Q′.

splay : T|Q→ T|Q′

t :T|Q ` splay a t :T|Q′ − 1
(app)

The rule for function application is an axiom, and closes this branch of the
typing derivation. This concludes the presentation of the partial type inference
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given in Figure 2. Similarly to the above example of splay, estimates for the
amortised costs of insertion and deletion on splay trees can be automatically
inferred by our tool ATLAS. Further, our analysis handles similar self-adjusting
data structures like pairing heaps and splay heaps (see Section 6.1).

3 Technical Foundation

In this short section, we provide a more detailed account of the formal system
underlying our tool ATLAS. We state the soundness of the system in Theorem 1.

A typing context is a mapping from variables V to types; denoted by upper-
case Greek letters. A program P is a set of typed function definitions of the form
f(x1, . . . , xn) = e, where the xi are variables and e an expression. A substitution
(or an environment) σ is a mapping from variables to values that respects types.
Substitutions are denoted as sets of assignments: σ = {x1 7→ t1, . . . , xn 7→ tn}.
We employ a simple cost-sensitive big-step semantics based on eager evaluation,

dressed up with cost assertions. The judgement σ
`
e⇒ v means that under

environment σ, expression e is evaluated to value v in exactly ` steps. Here
only rule applications emit (unit) costs. For brevity, the formal definition of the
semantics is omitted but can be found in [27].

In Section 2, we introduced a variant of Schoenmakers’ potential function, de-
noted as rk(t), and the additional potential functions p(a1,...,am,b)(t1, . . . , tm) :=
log2(a1 · |t1| + · · · + am · |tm| + b), denoting the log2 of a linear combination of
tree sizes. log2 denotes the logarithm to the base 2; throughout the paper we
stipulate log2(0) := 0 in order to avoid case distinctions. Note that the constant
function 1 is representable: 1 = λt. log2(0 · |t|+ 2) = p(0,2). We are now ready to
state the resource annotation of a sequence of trees:

Definition 1. A resource annotation or simple annotation of length m is a
sequence Q = [q1, . . . , qm] ∪ [(q(am,...,an,b))ai,b∈N], vanishing almost everywhere.
Let t1, . . . , tm be a sequence of trees. Then, the potential of t1, . . . , tm wrt. Q is
given by

Φ(t1, . . . , tm|Q) :=

m∑
i=1

qi · rk(ti) +
∑

a1,...,am,b∈N
q(a1,...,am,b) ·p(a1,...,am,b)(t1, . . . , tm) .

In case of an annotation of length 1, we sometimes write q∗ instead of q1, as
we already did above.

Example 1. Let t be a tree, then its potential could be defined as follows: rk(t)+
3 · log2(|t|)+1. Wrt. the above definition this potential becomes representable by
setting q∗ := 1, q(1,0) := 3, q(0,2) := 1. Thus, Φ(t|Q) = rk(t) + 3 · log2(|t|) + 1. ut

Let σ be a substitution, let Γ denote a typing context and let x1 :T, . . . , xm :T
denote all tree types in Γ . A resource annotation for Γ or simply annotation
is an annotation for the sequence of trees x1σ, . . . , xmσ. We define the po-
tential of the annotated context Γ |Q wrt. a substitution σ as Φ(σ;Γ |Q) :=
Φ(x1σ, . . . , xmσ|Q).
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Definition 2. An annotated signature F maps functions f to sets of pairs of
the annotation type for the arguments and the annotation type of the result:

F(f) := {α1 × · · · × αn|Q→ β|Q′ : Q,Q′ are annotations, Q is of length m} .

We suppose f takes n arguments of which m are trees; m 6 n by definition.

Instead of α1 × · · · × αn|Q → β|Q′ ∈ F(f), we sometimes succinctly write
f :α1 × · · · × αn|Q→ β|Q′. The cost-free signature, denoted as Fcf, is similarly
defined.

Example 2. Consider the function splay from above. Its signature is formally
represented as B× T|Q → T|Q′, where Q := [q∗] ∪ [(q(a,b))a,b∈N] and Q′ :=
[q′∗]∪ [(q′(a,b))a,b∈N]. We leave it to the reader to specify the coefficients in Q, Q′

so that the rule (app) as depicted in Section 2 can indeed by employed to type
the recursive call of splay.

Let Q = [q∗] ∪ [(q(a,b))a,b∈N] be an annotation such that q(a,b) > 0. Then
Q′ := Q−1 is defined as follows: Q′ = [q∗]∪[(q′(a,b))a,b∈N], where q′(0,2) := q(0,2)−1

and for all (a, b) 6= (0, 2) q′(a,b) := q(a,b). By definition the annotation coefficient

q(0,2) is the coefficient of the basic potential function p(0,2)(t) = log2(0|t|+2) = 1,
so the annotation Q− 1, decrements cost 1 from the potential induced by Q.

Type-and-Effect System. The typing system makes use of a cost-free semantics,
which does not attribute any costs to the calculation. I.e. the rule (app) (Sec-
tion 2) is changed so that no cost is emitted. The cost-free application rule is de-
noted as (app : cf). The cost-free typing judgement is written as Γ |Q `cf e :α|Q′.
The judgement Γ |Q ` e :α|Q′ is governed by a plethora of typing rules. We have
illustrated several typing rules in Section 2 (the complete set of typing rules can
be found in [27]).

A program P is called well-typed if for any rule f(x1, . . . , xk) = e ∈ P and any
annotated signature f : α1 × · · · × αk|Q→ β|Q′, we have x1 :α1, . . . , xk :αk|Q `
e :β|Q′. A program P is called cost-free well-typed, if the cost-free typing relation
is employed.

Hofmann et al. establish the following soundness result:6

Theorem 1 (Soundness Theorem). Let P be well-typed and let σ be an envi-

ronment. Suppose Γ |Q ` e :α|Q′ and σ
`
e⇒ v. Then Φ(σ;Γ |Q)−Φ(v|Q′) > `.

Further, if Γ |Q `cf e :α|Q′, then Φ(σ;Γ |Q) > Φ(v|Q′).

4 The Road to Automation, Continued

The above sketched type-and-effect system, originally proposed in [27], is only a
first step towards full automation. Several challenges need to be overcome, which
we detail in this section.

6 Note that soundness assumes a terminating execution σ
`
e⇒ v of P. We point out

that our analysis does not guarantee the termination of P for all environments σ.
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4.1 Type Checking

Comparison between logarithmic expressions, constitutes a first major challenge,
as such a comparison cannot be directly encoded as a linear constraint prob-
lem. To achieve such linearisation, [27] makes use of the following: (i) a sub-
tly and surprisingly effective variant of Schoenmakers potential (see Section 2);
(ii) mathematical facts about the logarithm function—like Lemma 1 below—
referred to as expert knowledge; and finally (iii) Farkas’ Lemma for turning
the universally-quantified premise of the weakening rule into an existentially-
quantified statement that can be added to the constraint system—see Lemma 2.
A simple mathematical fact that is employed by Hofmann et al.— following
earlier pen-and-paper proofs in the literature [37,38,41]—states as follows:

Lemma 1. Let x, y > 1. Then 2 + log2(x) + log2(y) 6 2 log2(x+ y).

We remark that our automated analysis shows that this lemma is not only
crucial in the analysis of splaying, but also for the other data structures we have
investigated. Further, Hofmann et al. state and prove the following variant of
Farkas’ Lemma, which lies at the heart of an effective transformation of com-
parison demands like (3) into a linear constraint problem. Note that ~u and ~f
denote column vectors of suitable length.

Lemma 2 (Farkas’ Lemma). Suppose A~x 6 ~b, ~x > 0 is solvable. Then the

following assertions are equivalent. (i) ∀~x > 0. A~x 6 ~b⇒ ~uT~x 6 λ and (ii) ∃~f >
0. ~uT 6 ~fTA ∧ ~fT~b 6 λ.

The lemma allows the assumption of expert knowledge through the assump-
tion A~x 6 ~b for all ~x > 0. E.g., thus formalised expert knowledge is a clear
point of departure for additional information. E.g. Hofmann et al. [27] propose
the following potential extensions: (i) additional mathematical facts on the log
function; (ii) a dedicated size analysis ; (iii) incorporation of basic static analysis
techniques. The incorporation of Farkas’ Lemma with suitable expert knowledge
is already essential for type checking, whenever the symbolic weakening rule (3)
needs to be discharged.

ATLAS incorporates two facts into the expert knowledge: Lemma 2 and the
monotonicity of the logarithm (see Section 5). We found these two facts to be
sufficient for handling our benchmarks, i.e. expert knowledge of form (ii) and
(iii) was not needed. (We note though that we have experimented with adding a
dedicated size analysis (ii), which interestingly increased the solver performance,
despite generating a large constraint system).

We indicate how ATLAS may be used to solve the constraints generated for
the example in Section 2. We recall the crucial application of the weakening
step between annotations Q2 and Q3. This weakening step can be automatically
discharged using the monotonicity of logs and Lemma 1. (More precisely, ATLAS
employs the mode w{mono l2xy} see, Section 5.) For example, ATLAS is able to
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verify the validity of the following concrete constants:

Q2 : q21 = q22 = q23 = 1

q2(0,0,0,2) = 1 q2(0,1,1,0) = 1

q2(0,0,1,0) = 1 q2(1,0,0,0) = 1

q2(0,1,0,0) = 1 q2(1,1,1,0) = 3

Q3 : q31 = q32 = q33 = 1

q3(0,0,0,2) = 2 q3(1,0,0,0) = 1

q3(0,0,1,0) = 1 q3(1,0,1,0) = 1

q3(0,1,0,0) = 3 q3(1,1,1,0) = 1

4.2 Type Inference

We extend the type-and-effect system of [27] from type checking to type infer-
ence. Further, we automate the application of structural rules like sharing or
weakening, which have so far required user guidance.

The two central contributions of this paper, as delineated in the introduction,
are based on significant improvement over the state-of-the-art as described above.
Concretely, they came about by a novel (i) optimisation layer ; (ii) a careful
control of the structural rules; (iii) the generalisation of user-defined proof tactics
into an overall strategy of type inference; and (iv) provision of an automated
amortised analysis in the sense of Sleator and Tarjan. In the sequel of the section,
we will discuss these stepping stones towards full automation in more details.

Optimisation Layer. We add an optimisation layer to the set-up, in order to
support type inference. This allows for the inference of (optimal) type anno-
tations based on user-defined type annotations. For example, assume the user-
provided type annotation rk(t)+3 log2(|t|)+1→ rk(splay(t)) can in principle be
checked automatically. Then—instead of checking this annotation—ATLAS au-
tomatically optimises the signature, by minimising the deduced coefficients. (In
Section 5 we discuss how this optimisation step is performed.) That is, ATLAS
reports the following annotation

splay : 1/2 rk(t) + 3/2 log2(|t|)→ 1/2 rk(splay(t)) ,

which yields the optimal amortised cost of splaying of 3/2 log2(|t|). Optimality
here means that no better bound has been obtained by earlier pen-and-paper
verification methods (compare the discussion in Section 1).

Structural Rules. We observed that an unchecked application of the structural
rules, that is of the sharing and the weakening rule, quickly leads to an explosion
of the size of the constraint system and thus to de-facto unsolvable problems. To
wit, an earlier version of our implementation ran continuously for 24/7 without
being able to infer a type for the complete definition of the function splay.7

The type-and-effect system proposed by Hofmann et al. is in principle linear,
that is, variables occur at most once in the function body. For example, this is
employed in the definition of the let-rule, cf. Section 2. However, a sharing rule

7 The code ran single-threaded on AMD® Ryzen 7 3800 @ 3.90 GHz.
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1 (match (* t *) leaf
2 (match (* cl *) ?
3 (w{l2xy} (let:tree:cf (* s *)
4 app (* splay_eq a bl *)
5 (match leaf
6 (let:tree:cf node (let:tree:cf node (w{mono} node))))))))

Fig. 3: Tactic that matches the zig-zig case of splay as shown in Fig. 1.

is admissible, that allows to treat multiple occurrences of variables. Occurrences
of non-linear variables are suitably renamed apart and the carried potential is
shared among the variants. (See [27] for the details.) The number of variables
strongly influences the size of the constraint problem. Hence, eager application
of the sharing rule proved infeasible. Instead, we restricted its application to
individual program traces. For the considered benchmark examples, this removed
the need for sharing altogether.

With respect to weakening, a careful application of the weakening rule proved
necessary for performance reasons: First, we apply weakening only selectively.
Second, when applying weakening, we employ different levels of granularity. We
may only perform a simple coefficient comparison, or we may apply monotonicity
or Lemma 1 or both in conjunction with Farkas’ Lemma. We give the details in
Section 5.

Proof Tactics. Hofmann et al. [27] already propose user-defined proof plans, so-
called tactics, to improve the effectivity of type checking. In combination with our
optimisation framework, tactics allow to significantly improve type annotations.
To wit, ATLAS can be invoked with user-defined resource annotations for the
function splay, representing its “standard” amortised complexity (e.g. copied
from Okasaki’s book [38]) and an easily definable tactic, cf. Figure 3. Then,
ATLAS automatically derives the optimal bound reported above. Still, for full-
automation tactics are clearly not sufficient. In order to obtain type inference in
general, we developed a generalisation of all the tactics that proved useful on our
benchmark and incorporated this proof search strategy into the type inference
algorithm. Using this, the aforementioned (unsuccessful) week-long quest for a
type inference of splaying can now be successfully answered (in an optimal form)
in mere minutes.

We’d like to argue that ATLAS proof search strategy for full automation is free
of bias towards the provided complexity analysis. As detailed in Section 5, the
heuristics incorporates common design principles of the data structures analysed.
Thus, we exploit recurring patterns in the input (destructuring of input trees,
handling base/recursive cases, rotations) not in the solution. The situation is
similar to the choice of the potential functions, which we expect to generalise to
other data structures. Similarly, we expect generalisability of the current proof
search strategy.

Automated Amortised Analysis In Section 2, we provided a high-level introduc-
tion into the potential method and remarked that Sleator and Tarjan’s original
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formulation is re-obtained, if the corresponding potential functions are defined
such that φ(v) := af (v) + ψ(x), see page 5. We now discuss how we can ex-
tract amortised complexities in the sense of Sleator and Tarjan from our ap-
proach. Suppose, we are interested in an amortised analysis of splay heaps.
Then, it suffices to equate the right-hand sides of the annotated signatures
of the splay heap functions. That is, we set del_min: T|Q1 → T|Q′, insert:
B× T|Q2 → T|Q′ and partition: B× T|Q3 → T|Q′ for some unknown re-
source annotations Q1, Q2, Q3, Q

′. Note that we use the same annotation Q′ for
all signatures. We can then obtain a potential function from the annotation Q′

in the sense of Sleator and Tarjan and deduce Qi−Q′ as an upper bound on the
amortised complexity of the respective function. In Section 5, we discuss how to
automatically optimise Qi − Q′ in order to minimise the amortised complexity
bound. This automated minimisation is the second major contribution of our
work. Our results suggest a new approach for the complexity analysis of data
structures. On the one hand, we obtain novel insights into the automated worst-
case runtime complexity analysis of involved programs. On the other hand, we
provide a proof-of-concept of a computer-aided analysis of amortised complexi-
ties of data-structures that so far have only been analysed manually.

5 Implementation

In this section, we present our tool ATLAS, which implements type inference for
the type system presented in Sections 2 and 3. ATLAS operates in three phases:

1.) Preprocessing, ATLAS parses and normalises the input program;
2.) Generation of the Constraint System, ATLAS extracts constraints from the

normalised program according to the typing rules (as sketched in Section 2);
3.) Solving, the derived constraint system is handed to an optimising constraint

solver and the solver output is converted into a type annotation.

In terms of overall resource requirements, the bottleneck of the system is phase
three. Preprocessing is both simple and fast. While the code implementing con-
straint generation might be complex, its execution is fast. All of the underlying
complexity is shifted into the third phase. On modern machines with multiple
gibibytes of main memory, ATLAS is constrained by the CPU, and not by the
available memory. In the remainder of this section, we first detail these phases of
ATLAS. We then go into more details of the second phase. Finally, we elaborate
the optimisation function which is the key enabler of type inference.

5.1 The Three Phases of ATLAS

1.) Preprocessing. The parser used in the first phase is generated with ANTLR8

and transformation of the syntax is implemented in Java. The preprocessing
performs two tasks: (i) Transformation of the input program into let-normal-
form, which is the form of program input required by our type system. (ii) The

8 See antlr.org.

https://antlr.org
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1 LNF[if a<a’

2 then (l,a,(leaf,a’,r))

3 else ((l,a’,leaf),a,r)]

1 let x1 = a<a’ in if x1

2 then LNF[(l,a,(leaf,a’,r))]
3 else LNF[((l,a’,leaf),a,r)]

1 let x1 = a < a’ in if x1

2 then let x2 = leaf in let x3 = (x2,a’,r) in (l,a,x3)

3 else let x4 = leaf in let x5 = (l,a’,x4) in (x5,a,r)

Fig. 4: Preprocessing: Let Normal Forms.

unsharing conversion creates explicit copies for variables that are used multiple
times. Making multiple uses of a variables explicit is required by the let-rule of
the type system. In order to satisfy the requirement of the let-rule, it is actually
sufficient to track variable usage on the level of program paths. It turns out that
in our benchmarks variables are only used multiple times in different branches of
an if-statement, for which no unsharing conversion is needed. Hence, we do not
discuss the unsharing conversion further in this paper and refer the interested
reader to [27] for more details.

Let-normal-form conversion. The let-normal-form conversion is performed
recursively and rewrites composed expressions into simple expressions, where
each operator is only applied to a variable or a constant. This conversion is
achieved by introducing additional let-constructs. We exemplify let-normal-form
conversion on a code snippet in Figure 4.

2.) Generation of the Constraint System. After preprocessing, we apply the typ-
ing rules. Importantly, the application of all typing rules, except for the weaken-
ing rule, which we discuss in further detail below, is syntax-directed : This means
that each node of the AST of the input program dictates which typing rule is
to be applied. The weakening rule could in principle be applied at each AST
node, giving the constraint solver more freedom to find a solution. This degree
of freedom needs to be controlled by the tool designer. In addition, recall that
the suggested implementation of the weakening rule (see Section 4.1) is to be
parameterised by the expert knowledge, fed into the weakening rule. In our ex-
periments we noticed that the weakening rule has to be applied sparingly in
order to avoid an explosion of the resulting constraint system.

We summarise the degrees of freedom available to the tool designer, which can
be specified as parameters to ATLAS on source level. 1.) The selected template
potential functions, i.e. the family of indices ~a, b for which coefficients q(~a,b) are
generated (we assume not explicitly generated are set to zero). 2.) The number
of annotated signatures (with costs and without costs) for each function. 3.) The
policy for applying the (parameterised) weakening rule. We detail our choices
for instantiating the above degrees of freedom in Section 5.2.

3.) Solving. For solving the generated constraint system, we rely on the Z3
SMT solver. We employ Z3’s Java bindings, load Z3 as a shared library, and
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exchange constraints for solutions. ATLAS forwards user-supplied configuration
to Z3, which allows for flexible tuning of solver parameters. We also record
Z3’s statistics, most importantly memory usage. During the implementation of
ATLAS, Z3’s feature to extract unsatisfiable cores has proven valuable. It sup-
plied us with many counterexamples, often directly pinpointing bugs in our im-
plementation. The tool exports constraint systems in SMT-LIB format to the
file system. This way, solutions could be cross-checked by re-computing them
with other SMT solvers that support minimisation, such as OptiMathSAT [43].

5.2 Details on the Generation of the Constraint System

We now discuss our choices for the aforementioned degrees of freedom.
Potential function templates. Following [27], we create for each node in the

AST of the considered input program, where n variables of tree-type are cur-
rently in context, the coefficients q1, . . . , qn for the rank functions and the coef-
ficients q(~a,b) for the logarithmic terms, where ~a ∈ {0, 1}n and b ∈ {0, 2}. This
choice turned out to be sufficient in our experiments.

x(1,1,2)

x(1,0,2)x(0,1,2) x(1,1,0)

x(0,0,2) x(0,1,0) x(1,0,0)

x(0,0,0)

Fig. 5: Monotonicity Lat-
tice for |Q| = 2.

Number of Function Signatures. We fix the num-
ber of annotations for each function f : α1 × · · · ×
αn|Q → β|Q′ to one regular and one cost-free sig-
nature. This was sufficient for our experiments.

Weakening. We need to discharge symbolic com-
parisons of form Φ(Γ |P ) 6 Φ(Γ |Q). As indicated
in Section 4, we employ Farkas’ Lemma to de-
rive constraints for the weakening rule. For context
Γ = t1, . . . , tn, we introduce variables x(~a,b) where
~a ∈ {0, 1}n, b ∈ {0, 2}, which represent the poten-
tial functions p(~a,b) = log2(a1|t1| + . . . + an|tn| + b). Next, we explain how the
monotonicity of log2 and Lemma 1 can be used to derive inequalities on the vari-
ables x(~a,b), which can then be used to instantiate matrix A in Farkas’ Lemma
as stated in Section 4.

Monotonicity. We observe that p(~a,b) = log2(a1|t1| + . . . + an|tn| + b) 6
log2(a′1|t1|+ . . .+ a′n|tn|+ b′) = p(~a′,b′), if a1 6 a′1, . . . , an 6 a′n and b 6 b′. This
allows us to obtain the lattice shown in Figure 5. A path from x(~a′,b′) to x(~a,b)
signifies x(~a,b) 6 x(~a′,b′) resp. x(~a,b) − x(~a′,b′) 6 0, represented by a row with
coefficients 1 and −1 in the corresponding columns of matrix A.

Mathematical facts, like Lemma 1. For an annotated context of length 2,
Lemma 1 can be stated by the inequality 2x(0,0,2)+x(0,1,0)+x(1,0,0)−2x(1,1,0) 6 0;
we add a corresponding row with coefficients 2, 1, 1,−2 to the matrix A. Likewise,
for contexts of length > 2, we add, for each subset of 2 variables, a row with
coefficients 2, 1, 1,−2, setting the coefficients of all other variables to 0.

Sparse expert knowledge matrix. We observe for both kinds of constraints
that matrix A is sparse. We exploit this in our implementation and only store
non-zero coefficients.

Parametrisation of weakening. Each applications of the weakening rule is
parameterised by the matrix A. In our tool, we instantiate A with either the
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constraints for (i) monotonicity, shortly referenced as w{mono}; (ii) Lemma 1
(w{l2xy}); (iii) both (w{mono l2xy}); or (iv) none of the constraints (w). In the
last case, Farkas’ Lemma is not needed because weakening defaults to point-wise
comparison of the coefficients p(~a,b), which can be implemented more directly.
Each time we apply weakening, we need to choose how to instantiate matrix A.
Our experiments demonstrate that we need to apply monotonicity and Lemma 1
sparingly in order to avoid blowing up the constraint system.

Tactics and Automation. ATLAS supports manually applying the weakening
rule—for this the user has to provide a tactic—and a fully-automated mode.

Naive Automation. Our first attempt to automation applied the weakening
rule everywhere instantiated with the full amount of available expert knowledge.
This approach did not scale.

Manual Mode via Tactics. A tactic is given as a text file that contains a
tree of rule names corresponding to the AST nodes of the input program, into
which the user can insert applications of the weakening rule, parameterised by
the expert knowledge which should be applied. A simple tactic is depicted in
Figure 3. Tactics are distributed with ATLAS, see [32]. The user can name sub-
trees for reference in the result of the analysis and include ML-style comments
in the tactics text. We provide two special commands that allow the user to
directly deal with a whole branch of the input program: The question mark (?)
allows partial proofs; no constraints will be created for the part of the program
thus marked. The underscore ( ) switches to the naive automation of ATLAS and
will apply the weakening rule with full expert knowledge everywhere. Both, ?
and , were invaluable when developing and debugging the automated mode. We
note that the manual mode still achieves solving times that are by a magnitude
faster than the automated mode, which may be of interest to a user willing to
hand-optimise solving times.

Automated Mode. For automation, we extracted common patterns from the
tactics we developed manually: Weakening with mode w{mono} is applied before
(var) and (leaf), w{mono l2xy} is applied only before (app). (We recall that the
full set of rules employed by our analysis can be found in [27].) Further, for AST
subtrees that construct trees, i.e. which only consist of (node), (var) and (leaf)
rule applications, we apply w{mono} for each inner node, and w{l2xy} for each
outermost node. For all other cases, no weakening is applied. This approach is
sufficient to cover all benchmarks, with further improvements possible.

5.3 Optimisation

Given an annotated function f : α1 × · · · × αn|Q→ β|Q′, we want to find values
for the coefficients of the resource annotations Q and Q′ that minimise Φ(Γ |Q) −
Φ(Γ |Q′), since this difference is an upper bound on the amortised cost of f ,
cf. Section 4.2. However, as with weakening, we cannot directly express such
a minimisation, and again resort to linearisation: We choose an optimisation
function that directly maps from Q and Q′ to Q. Our optimisation function
combines four measures, three of which involve a difference between coefficients
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of Q and Q′, and a fourth one that only involves coefficients from Q in order
to minimise the absolute values of the discovered coefficients. We first present
these measures for the special case of |Q| = 1.

The first measure d1(Q,Q′) := q∗ − q′∗ reflects our goal of preserving the
coefficient for rk; note that for d1(Q,Q′) 6= 0, the resulting complexity bound
would be super-logarithmic. The second measure d2(Q,Q′) :=

∑
(a,b)(q(a,b) −

q′(a,b)) ·w(a, b) reflects the goal of achieving logarithmic bounds that are as small
as possible. Weights are defined to penalise more complex terms, and to exclude
constants. (Recall that 1 is representable as log2(0 + 2).) We set

w(a, b) :=

{
0, for (a, b) = (0, 2),

(a+ (b+ 1)2)2, otherwise.

The third measure d3(Q,Q′) := q(0,2) − q′(0,2) reflects the goal of minimising

constant cost. Lastly, we set d4(Q,Q′) :=
∑

(a,b) q(a,b) in order to obtain small
absolute numbers. The last measure does not influence bounds on the amortised
cost, but leads to more beautiful solutions. These measures are then composed to
the linear objective function min

∑4
i=1 di(Q,Q

′) ·wi. In our implementation, we
set wi = [16127, 997, 97, 2]; these weights are chosen (almost) arbitrary, we only
noticed that w1 must be sufficiently large to guarantee its priority. (We note that
these weights were sufficient for our experiments; we refer to the literature for
more principled ways of choosing the weights of an aggregated cost function [34].)

Multiple arguments. For |Q| > 1, we set d1 :=
∑|Q|
i=1 qi − q′∗ and d2(Q,Q′) :=∑

(a,a,...,b)(q(a,a,...,b) − q′(a,b)) · w(a, b). The required changes for d3 and d4 are

straight-forward. In our benchmarks, there is only one function (merge of pairing
heaps) that requires this minimisation function.

6 Evaluation

We first describe the benchmark functions employed to evaluate ATLAS and then
detail this experimental evaluation, already depicted in Table 1.

6.1 Automated Analysis of Splaying et al.

Splay Trees. Introduced by Sleator and Tarjan [47, 49], splay trees are self-
adjusting binary search trees with strictly increasing in-order traversal, but with-
out an explicit balancing condition. Based on splaying, searching is performed
by splaying with the sought element and comparing to the root of the result.
Similarly, insertion and deletion are based on splaying. Above we used the zig-
zig case of splaying, depicted in Figure 1 as motivating code example. While
the pen-and-paper analysis of this case is the most involved, type inference for
this case alone did not directly yield the desired automation of the complete
definition. Rather, full automation required substantial implementation effort,
as detailed in Section 5. As already emphasised, it came as a surprise to us that
our tool ATLAS is able match up and partly improve upon the sophisticated
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Function
(w)

Proof automated
(naive)

automated
(improved)

manual

ST.splay (zig-zig)
Selective n/a 7718 18S 2552 <1S
All 11792 45S 9984 19S 2864 <1S

ST.splay
Selective n/a 42095 8M1S 19111 12S
All 68103 t/o 24H 54377 14M19S 23323 1M27S

SH.partition
Selective n/a 33729 7M9S 15213 6S
All 51995 t/o 24H 43549 15M2S 16829 10S

PH.merge_pairs
Selective n/a 25860 1M3S 6414 <1S
All 43515 t/o 24H 34918 13M41S 6558 <1S

(a) Comparison of the number of constraints generated and time taken for the type
inference of the core operation of each benchmark plus the zig-zig case of splay.

Module automated manual
Assertions Time Memory Assertions Time Memory

ST 54794 24M17S 3204 24677 43S 280
SH 37911 7M35S 1482 17877 12S 237
PH 29493 3M42S 760 7987 1S 29

(b) Number of assertions, solving time and maximum memory usage (in mebibytes)
for the combined analysis of functions per-module.

Table 2: Experimental Results

optimisations performed by Schoenmakers [41, 42]. This seems to be evidence
of the versatility of the employed potential functions. Further, we leverage the
sophistication of our optimisation layer in conjunction with the current power
of state-of-the-art constraint solvers, like Z3 [36].

Splay Heaps. To overcome deficiencies of splay trees when implemented func-
tionally, Okasaki introduced splay heaps. Splay heaps are defined similarly to
splay trees and their (manual) amortised cost analysis follows similar patterns
as the one for splay trees. Due to the similarity in the definitions between splay
heaps and splay trees, extension of our experimental results in this direction
did not pose any problems. Notably, however, ATLAS improves the known com-
plexity bounds on the amortised complexity for the functions studied. We also
remark that typical assumptions made in pen-and-paper proofs are automati-
cally discharged by our approach: Schoenmakers [41, 42] as well as Nipkow and
Brinkop [37] make use of the (obvious) fact that the size of the resulting tree t′

or heap h′ equals the size of the input. As discussed, this information is captured
by a cost-free derivation, cf. Section 2.

Pairing Heaps. These are another implementation of heaps, which are repre-
sented as binary trees, subject to the invariant that they are either leaf, or
the right child is leaf, respectively. The left child is conceivable as list of pair-
ing heaps. Schoenmakers and Nipkow et al. provide a (semi-)manual analysis of
pairing heaps, that ATLAS can verify or even improve fully-automatically. We
note that we analyse a single function merge_pairs, whereas [37] breaks down
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the analysis and studies two functions pass_1 and pass_2 with merge_pairs =
pass_2 ◦ pass_1. All definitions can be found at [33].

6.2 Experimental Results

Our main results have already been stated in Table 1 of Section 1. Table 2a
compares the differences between the “naive automation” and our actual au-
tomation (“automated mode”), see Section 5. Within the latter, we distinguish
between a “selective” and a “full” mode. The “selective” mode is as described on
page 18. The “full” mode employs weakening for the same rule applications as
the “selective” mode, but always with option w{mono l2xy}. The same applies
to the “full” manual mode. The naive automation does not support selection of
expert knowledge. Thus the “selective” option is not available, denoted as “n/a”.
Timeouts are denoted by “t/o”. As depicted in the table, the naive automation
does not terminate within 24h for the core operations of the three considered
data structures, whereas the improved automated mode produces optimised re-
sults within minutes. In Table 2b, we compare the (improved) automated mode
with the manual mode, and report on the sizes of the resulting constraint system
and on the resources required to produce the same results. Observe that even
though our automated mode achieves reasonable solving times, there is still a
significant gap between the manually crafted tactics and the automated mode,
which invites future work.

7 Conclusion

In this paper we have for the first time been able to automatically conduct an
amortised analysis for self-adjusting data structures. Our analysis is based on
the “sum of logarithms” potential function and we have been able to automate
reasoning about these potential functions by using Farkas’ Lemma for the linear
part of the calculations and adding necessary facts about the logarithm. Imme-
diate future work is concerned with replacing the “sum of logarithms” potential
function in order to analyse skew heaps and Fibonacci heaps [42]. In particular,
the potential function for skew heaps, which counts “right heavy” nodes, is in-
teresting, because it is also used as a building block by Iacono in his improved
analysis of pairing heaps [29,30]. Further, we envision to extend our analysis to
related probabilistic settings such as priority queues [13] and skip lists [40].
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