ogic

Uniform Resource Analysis by Rewriting
Strengths and Weaknesses

Georg Moser

Department of Computer Science
University of Innsbruck

http://cl-informatik.uibk.ac.at
http://cl-informatik.uibk.ac.at/~georg
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

SR
Outline

GM (DCS @ UIBK) September 5, 2017

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

R
A Textbook Example

Example
let rec fold_left [acc = function
[1 — acc

| x::xzs — fold_left f (f acc z) zs ;;
let rev [= fold_left (fun zs z — z::xzs) [1 [;;

GM (DCS @ UIBK) September 5, 2017

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

R
A Textbook Example

Example
let rec fold_left [acc = function
[1 — acc

| x::xzs — fold_left f (f acc z) zs ;;
let rev [= fold_left (fun zs z — z::xzs) [1 [;;

ﬁ says

What is the complexity of rev?

GM (DCS @ UIBK) September 5, 2017

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

R
A Textbook Example

Example

let rec fold_left [acc = function
[1 — acc
| x::xzs — fold_left f (f acc z) zs ;;
let rev [= fold_left (fun zs z — z::xs) [1 [;;

ﬁ says

What is the complexity of rev?

ﬁ says

Ahem, I'm so sorry, but what do you mean by “complexity”?

GM (DCS @ UIBK) September 5, 2017

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

R
A Textbook Example

Example

let rec fold_left [acc = function
[1 — acc
| x::xzs — fold_left f (f acc z) zs ;;
let rev [= fold_left (fun zs z — z::xzs) [1 [;;

ﬁ says

What is the complexity of rev?

ﬁ says

Ahem, I'm so sorry, but what do you mean by “complexity”?

ﬁ says

Sigh, runtime complexity, of course!

GM (DCS @ UIBK) September 5, 2017

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

IVSHEHEREEEE
Runtime Complexity, Of Course!

Example (revisited)
rev(xs) — rev’(xs, nil) rev'(nil, acc) — acc

rev'(x : xs,acc) — rev'(xs,x i acc)

GM (DCS @ UIBK) September 5, 2017

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

IVSHEHEREEEE
Runtime Complexity, Of Course!

Example (revisited)
rev(xs) — rev'(xs, nil) rev/(nil, acc) — acc

rev'(x : xs,acc) — rev'(xs,x i acc)

Definitions
® a term rewrite system (TRS) R is a finite set of rules

® a computation of R is the application of the rules from left to right

GM (DCS @ UIBK) September 5, 2017 4/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

IVSHEHEREEEE
Runtime Complexity, Of Course!

Example (revisited)
rev(xs) — rev'(xs, nil) rev/(nil, acc) — acc

rev'(x : xs,acc) — rev'(xs,x i acc)

Definitions
® a term rewrite system (TRS) R is a finite set of rules

® a computation of R is the application of the rules from left to right

Example
rev(l =2 2 = 3 = onil) =g rev/(1 2 2 = 3 onilnil)
—grev'(2 3 =il 1 il
=R rev'(nil,3 2 1 onil)
—r3 =2 1 il

GM (DCS @ UIBK) September 5, 2017

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

R
Definition
a TRS R is terminating if —% is well-founded J

GM (DCS @ UIBK) September 5, 2017

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

R
Definition
a TRS R is terminating if —% is well-founded

Definitions

® a function symbol f is called defined if it occurs as the root symbol
on the left of a rule, otherwise f is called constructor

® values are terms made up from constructors and variables

GM (DCS @ UIBK) September 5, 2017 5/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

R
Definition
a TRS R is terminating if —% is well-founded

Definitions
® a function symbol f is called defined if it occurs as the root symbol
on the left of a rule, otherwise f is called constructor

® values are terms made up from constructors and variables

Definition
we define the runtime complexity wrt. a terminating R:
dhz(t) = max{n | Ju t =% u}
rcr(n) = max{dhg(t) | size of t < n and t is basic}

a term f(t1,...,t,) is basic if f is defined and all ¢; are values

GM (DCS @ UIBK) September 5, 2017 5/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

R
Definition
a TRS R is terminating if —% is well-founded

Definitions
® a function symbol f is called defined if it occurs as the root symbol
on the left of a rule, otherwise f is called constructor

® values are terms made up from constructors and variables

Definition
we define the runtime complexity wrt. a terminating R:
dhz(t) = max{n | Ju t =% u}
rcr(n) = max{dhg(t) | size of t < n and t is basic}

a term f(t1,...,t,) is basic if f is defined and all ¢; are values

Example (continued)
we obtain rcg € O(n)

GM (DCS @ UIBK) September 5, 2017 5/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Scenic Tour

Historic Detour: Derivational Complexity Analysis

ﬁ. says

thank you very much for the explanation, but is runtime complexity a
natural notion for rewriting?

GM (DCS @ UIBK) September 5, 2017 6/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Scenic Tour

Historic Detour: Derivational Complexity Analysis

ﬁ. says

thank you very much for the explanation, but is runtime complexity a
natural notion for rewriting?

Example

consider the following set of rules
d(g(0,0),y) — ¢(0) h(e(x),y) = h(d(x,y),s(y))
d(g(x,y),z) = gle(x).d(y,2)) gle(x)
d(g(g(x,5),0),s(z)) = g(d(g(x,y),s(2)), d(g(x, y), 2))

GM (DCS @ UIBK) September 5, 2017 6/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Historic Detour: Derivational Complexity Analysis

ﬁ. says

thank you very much for the explanation, but is runtime complexity a
natural notion for rewriting?

Example

consider the following set of rules
d(g(0,0),y) — ¢(0) h(e(x),y) = h(d(x,y),s(y))
d(g(x,y),z) = gle(x).d(y,2)) gle(x)
d(g(g(x,5),0),s(z)) = g(d(g(x,y),s(2)), d(g(x, y), 2))

ﬁ says

ahem, actually no

GM (DCS @ UIBK) September 5, 2017 6/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Scenic Tour

Definitions
® we define the derivational complexity wrt. a terminating R:

dcr(n) = max{dhz(t) | size of t < n}

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Scenic Tour

Definitions
® we define the derivational complexity wrt. a terminating R:

dcr(n) = max{dhz(t) | size of t < n}
® method X induces derivational complexity from class C if

“R terminating by X" implies dcg € C

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Definitions
® we define the derivational complexity wrt. a terminating R:
dcr(n) = max{dhz(t) | size of t < n}
® method X induces derivational complexity from class C if

"R terminating by X" implies dcg € C

Theorem

the multiset path order induces primitive recursive derivational
complexity and primitive recursive runtime complexity

GM (DCS @ UIBK) September 5, 2017 7/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Definitions
® we define the derivational complexity wrt. a terminating R:
dcr(n) = max{dhz(t) | size of t < n}
® method X induces derivational complexity from class C if

"R terminating by X" implies dcg € C

Theorem

the multiset path order induces primitive recu
complexity and primitive recursive runtime co

D. Hofbauer and C. Lautemann. %

Termination proofs and the length of derivations.
In Proc. 3rd RTA, volume 355 of LNCS, pages 167-177, 1989.

D. Hofbauer.

Termination proofs by multiset path orderings imply primitive recursive derivation
lengths.

TCS. 105:129-140..1992.
GM (DCS @ UIBK) September 5, 2017

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

The Multiset Path Order

let > denote a precedence; > induces order >,,0:

s =f(s1,...,5) >mpo t if either

GM (DCS @ UIBK) September 5, 2017 8/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Scenic Tour

The Multiset Path Order

let > denote a precedence; > induces order >,,0:

s =f(s1,...,5) >mpo t if either

t=f(ty,...,t,) and >mp0§

*{{51, ... ,Sn}} >mSL{{t1,. R tn}}

GM (DCS @ UIBK) September 5, 2017 8/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Scenic Tour

The Multiset Path Order

let > denote a precedence; > induces order >,,0:

s =f(s1,...,5) >mpo t if either

A t=17(t,...,t,) and é%}poﬁ
*{{51,...,5,,}} >mSL{{t1,...,tn}}

f
t.:g(tl,...,tm) with f>gand A >mpo
Vis >mp0 tj

GM (DCS @ UIBK) September 5, 2017 8/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Scenic Tour

The Multiset Path Order

let > denote a precedence; > induces order >,,0:

s =f(s1,...,5) >mpo t if either

di s Zmpo t ? ~mpo

t="f(t1,...,t,) and
*{{51,...,5,,}} >mgg{{t1,...,tn}}

f
Bt=g(t,. .., tm) with f > g and ‘ >

Vis >mpo Li

GM (DCS @ UIBK) September 5, 2017

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Theorem

® polynomial interpretations induce double-exponential derivational
complexity

® |exicographic path orders induce multiple recursive functions

® DP framework in conjunction with the subterm criterion induces
multiple recursive functions

e simplification orders induce functions elementary in Hp, where
A

GM (DCS @ UIBK) September 5, 2017 9/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Theorem

® polynomial interpretations induce double-exponential derivational
complexity

® |exicographic path orders induce multiple recursive functions

DP framework in conjunction with the subterm criterion induces
multiple recursive functions

simplification orders induce functions elementary in Hp, where
A>S> e

GM (DCS @ UIBK) September 5, 2017 9/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Theorem
® polynomial interpretations induce double-exponential derivational

complexity

lexicographic path orders induce multiple recursive functions

DP framework in conjunction with the subterm criterion induces

multiple recursive functions

simplification orders induce functions elementary in Hp, where

A>> e

@ I. Lepper.

Simply terminating rewrite systems with long derivations.
Arch. Math. Logic, 43:1-18, 2004.

@ A. Weiermann.
Complexity bounds for some finite forms of Kruskal's theorem.

JSC, 18(5):463-488, November 1994.

GM (DCS @ UIBK) September 5, 2017 9/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Scenic Tour

Example (revisited)
d(g(0,0),y) — €(0) h(e(x),y) = h(d(x, y),s(x))
d(g(x,y),2) = gle(x),d(y,2)) gle(x),ely) ((%, %))

GM (DCS @ UIBK) September 5, 2017

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example (revisited)
d(g(0,0),y) — ¢(0) h(e(x), y) — h(d(x, y),s(y))
d(g(x,y),z) — gle(x),d(y,2)) gle(x),e(y)) — e(s(x,¥))
d(g(g(x, ¥),0),s(z)) — &(d(g(x, y),s(2)),d(g(x, y), 2))

The Hydra Battle by Kirby and Paris

the beast is a finite tree, each leaf corresponds to a head; Hercules
chops off heads of the Hydra, but the Hydra regrows:

® if the cut head has a pre-predecessor, then the remaining subtree
issued from this node is multiplied by the stage of the game.

® otherwise the Hydra ignores the loss.

Hercules wins, when the beast is reduced to the empty tree.

GM (DCS @ UIBK) September 5, 2017 10/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example (revisited)
d(g(0,0),y) — ¢(0) h(e(x), y) — h(d(x, y),s(y))
d(g(x,y),z) — gle(x),d(y,2)) gle(x),e(y)) — e(s(x,¥))
d(g(g(x, ¥),0),s(z)) — &(d(g(x, y),s(2)),d(g(x, y), 2))

The Hydra Battle by Kirby and Paris

the beast is a finite tree, each leaf corresponds to a head; Hercules
chops off heads of the Hydra, but the Hydra regrows:

® if the cut head has a pre-predecessor, then the remaining subtree
issued from this node is multiplied by the stage of the game.

® otherwise the Hydra ignores the loss.

Hercules wins, when the beast is reduced to the empty tree.

Theorem
termination of the battle is independent: PAl/ the battle terminates

GM (DCS @ UIBK) September 5, 2017 10/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Scenic Tour

Example

7 W

(H27 H37

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Scenic Tour

Example

N

(Wowoel,1) (w® & w?,2) (w?-3,3)

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Scenic Tour

Example

N

(Wowol,1) (w® & w?,2) (w?-3,3)
Wwitw?+1 > w3+ w? > w?-3

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Scenic Tour

Example

N

(Wowol,1) (w® & w?,2) (w?-3,3)

Hw3+w2+1 ~ed Hw3+w2 ~ed He2.3

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Scenic Tour

Example

N

(W w? o 1,1) (w3 @ w?,2) (w?-3,3)
Hw3+w2+1 > ed Hw3+w2 > ed Hw2,3
.
Remark

® based on the game, Dershowitz and Jouannaud designed the TRS as
a challenging termination problem

® however, the implementation is buggy and has later been rectified by
Dershowitz

v

GM (DCS @ UIBK) September 5, 2017 11/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example
h(e(x),y) = h(d(x, y),s(y)) (a,n) = (an,n+1)
d(g(g(0,x),y),0) — e(y) strategy of the game
d(g(0,x),y) — e(x)
d(g(x,y), z) = g(d(x, 2),e(y))
d(g(g(0,x),y),s(z)) — g(e(x),d(g(g(0, %), y),)
gle(x),e(y)) — e(g(x,y)) auxiliary rule
v
Remark
® based on the game, Dershowitz and Jouannaud designed the TRS as
a challenging termination problem
® however, the implementation is buggy and has later been rectified by
Dershowitz)

GM (DCS @ UIBK) September 5, 2017 11/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example

h(e(x),y) = h(d(x, y),s(y)) (a,n) = (an,n+1)
d(g(g(0,x),y),0) — e(y) strategy of the game
d(g(0,x),y) — e(x)

d(g(x,y), z) = g(d(x, 2),e(y))

d(g(g(0,x),y),s(z)) — g(e(x), d(g(g(0, x),

g(e(x),e(y)) — e(g(x,y))

Remark ; . ~/)
® based on the game, Dershowitz and Jouannaud designed the as

a challenging termination problem

® however, the implementation is buggy and has later been rectified by
Dershowitz)

GM (DCS @ UIBK) September 5, 2017 11/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

RTALooP # 23

Must any termination ordering used for proving termination of
the Battle of Hydra and Hercules-system have the Howard|[-
Bachmann] ordinal as its order type?®

“http://www.win.tue.nl/rtaloop/.

GM (DCS @ UIBK) September 5, 2017 12/23

http://www.win.tue.nl/rtaloop/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

RTALooP # 23

Must any termination ordering used for proving termination of
the Battle of Hydra and Hercules-system have the Howard|[-
Bachmann] ordinal as its order type?®

“http://www.win.tue.nl/rtaloop/.

Cichon’s Conjecture

The derivational complexity induced by any termination order of order type
« is bounded by the slow-growing hierarchy indexed by «

http://www.win.tue.nl/rtaloop/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

RTALooP # 23

Must any termination ordering used for proving termination of
the Battle of Hydra and Hercules-system have the Howard|[-
Bachmann] ordinal as its order type?®

“http://www.win.tue.nl/rtaloop/.

Cichon’s Conjecture

The derivational complexity induced by any termination order of order type

« is bounded by the slow-growing hierarchy indexed by «)

Answer
NO. 4

http://www.win.tue.nl/rtaloop/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

RTALooP # 23
Must any termination ordering used for proving termination of
the Battle of Hydra and Hercules-system have the Howard|[-
Bachmann] ordinal as its order type?®

“http://www.win.tue.nl/rtaloop/.

Cichon’s Conjecture

The derivational complexity induced by any termination order of order type

« is bounded by the slow-growing hierarchy indexed by «)

Answer
No.

GM. /

The Hydra battle and Cichon's principle.
AAECC, 20(2):133-158, 2009.

GM (DCS @ UIBK) September 5, 2017 12/23

http://www.win.tue.nl/rtaloop/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Runtime Complexity Analysis

says

aha, coming back to runtime complexity, | found the following ...

Tyrolean Complexity Tool - Web Interface - Mozilla Firefox x
Fle Edt Vew Histoy Bookmarks Tools Help
/ Tyrolean Complexity Tool - x | +
€) ®| colob-c703 ubkac.at/tcttet-trsFoutput ©1 120% | ¢ | O embodying B O A ABEY =

G Computational Logic £ Zimbra [d fb @ Bank Austria sz G, CLsmb @ VPN & EasyChair B HyperDia == GMX & paylfe G TcT @ WG 16 G smb (0] OWA

R Home TcT Home TCT Web

Input (in xm! or ts format)

select example ... v lorupload | Browse.. | No file selected

1 (VAR x xs acc)

5 (RULES
2 revacc(xs,nil)
5 revacc(nil,acc) -> a

§) revacclcons(x,xs),acc) -> revacc(xs, cons (x,acc))

Category
Complexity Measure: @ Runtime Complexity O Derivational Complexity

Rewriting Strategy: ® Full Rewiting O Innermost Rewriting

Search Strategy
®iautomatic Ocerity O customised by user

| check |withtimeoutof| 30 |seconds

output

WORST_CASE(?,0(n"1))
*** 1 Success [(?,0(n"1))] ***
Considered Problem
Strict DP Rules:

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Runtime Complexity Analysis

ﬁ says

indeed, TcT can fully automatically handle the TRS, for example using a
method called matrix interpretations

GM (DCS @ UIBK) September 5, 2017 14/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Runtime Complexity Analysis

H...

indeed, TcT can fully automatically handle the TRS, for example using a
method called matrix interpretations

y
Definition

a matrix interpretation of dimension n is a pair M = (N”, >) such that
VfeF:

-

(Vi .o Vi) = M + o+ My v +
the M; are square matrices such that (M;);1 > 1
the order > is defined as:
(X1, %05+ - > Xn) > (Y1, Y25 -y Yn) |
ifx1>yrandVi>2 x>y

GM (DCS @ UIBK) September 5, 2017 14/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Runtime Complexity Analysis

Example

consider the TRS (xoy) oz — x o (y o z) together with the matrix
interpretation M

i) 4)+

GM (DCS @ UIBK) September 5, 2017

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Runtime Complexity Analysis

Example

consider the TRS (x o y) oz — x o (y o z) together with the matrix
interpretation M

(3 (3 909

we obtain V assignments to the variables:
[(xoy)oz)] > [(xo(yoz))
we say M is compatible with the TRS

GM (DCS @ UIBK) September 5, 2017

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Runtime Complexity Analysis

Example

consider the TRS (xoy) oz — x o (y o z) together with the matrix
interpretation M

(3 (3 909

we obtain V assignments to the variables:
[(xoy)oz)] > [(xo(yoz))
we say M is compatible with the TRS

Observation
t=ty >rt1 >gr b >R 3 >R g >R -
implies

[t] > [t1] > [t2] > [t3] > [ta] > - --

for compatible matrix interpretations M

GM (DCS @ UIBK) September 5, 2017 15/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Runtime Complexity Analysis

Definition
let M denote a matrix interpretation and let

M = max{M; | M; a square matrix used in fy(}

then M is called maximums matrix of M

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Runtime Complexity Analysis

Definition
let M denote a matrix interpretation and let
M = max{M; | M; a square matrix used in fy(}

then M is called maximums matrix of M

Theorem

let M be a matrix interpretation of dimension d compatible with a TRS
R and let M be the maximum matrix of M, if the spectral radius
p(M) < 1, then rcg € O(n9)

Proof.

by linear algebra, for example Jordan Normal Form Theorem |

GM (DCS @ UIBK) September 5, 2017 16/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Runtime Complexity Analysis

Definition
let M denote a matrix interpretation and let
M = max{M; | M; a square matrix used in fy(}

then M is called maximums matrix of M

Theorem

let M be a matrix interpretation of dimension d compatible with a TRS
R and let M be the maximum matrix of M, if the spectral radius
p(M) < 1, then rcg € O(n9)

Proof.

by linear algebra, for example Jordan Normal Form Theorem |

@ A. Middeldorp, GM, F. Neurauter, J. Waldmann, and H. Zankl.
Joint spectral radius theory for automated complexity analysis of rewrite systems.
In Proc. 4th CAl, volume 6742 of LNCS, pages 1-20, 2011.
GM (DCS @ UIBK) September 5, 2017 16/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Runtime Complexity Analysis

Definition
let M denote a matrix interpretation and let

M = max{M; | M; a square matrix used in fy(}

then M is called maximums matrix of

Theorem

let M be a matrix interpretation of din
R and let M be the maximum matrix ¢
p(M) < 1, then rcg € O(n?)

a TRS

2]

Proof. Ny
by linear algebra, for example Jordap//f@ormal Form Theorem |

@ A. Middeldorp, GM, F. Neurauter, J. Waldmann, and H. Zankl.
Joint spectral radius theory for automated complexity analysis of rewrite systems.
In Proc. 4th CAl, volume 6742 of LNCS, pages 1-20, 2011.
GM (DCS @ UIBK) September 5, 2017 16/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Tyrolean Complexity Tool (tct-trs)

tct-trs

Iﬁbraﬁesll tct-core |

fully automated complexity
analysis tool for TRSs

recipient of a Godel medal in
the 1st FLOC Olympic games

modular complexity analysis
framework

partly certified by CeTA

http://vsl2014.at/olympics/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Tyrolean Complexity Tool (tct-trs)

tct-trs

| libraries | | tct-core |

fully automated complexity
analysis tool for TRSs

recipient of a Godel medal in
the 1st FLOC Olympic games

modular complexity analysis
framework

partly certified by CeTA

http://vsl2014.at/olympics/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Tyrolean Complexity Tool (tct-trs)

tct-trs

Iﬁbraﬁesll tct-core |

fully automated complexity
analysis tool for TRSs

recipient of a Godel medal in
the 1st FLOC Olympic games

modular complexity analysis
framework

partly certified by CeTA

http://vsl2014.at/olympics/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Tyrolean Complexity Tool (tct-trs)

tct-trs

|Iibraries|| tct-core |

fully automated complexity
analysis tool for TRSs

recipient of a Godel medal in
the 1st FLOC Olympic games

modular complexity analysis
framework

partly certified by CeTA

http://vsl2014.at/olympics/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Tyrolean Complexity Tool (tct-trs)

e fully automated complexity

& analysis tool for TRSs
5 ® recipient of a Godel medal in
- t es
‘ libraries H tct-core ‘ o
......................... R fr

e T LT ®p

@ M. Avanzini, C. Sternagel, and R. Thiemann
Certification of complexity proofs using CeTA
In Proc. 26th RTA, volume 36 of LIPIcs, pag

[M. Avanzini and GM.
A combination framework for complexity.
IC, 248:22-55, 2016.

@ M. Avanzini, GM, and M. Schaper.
Tct: Tyrolean complexity tool.
In Proc. 22nd TACAS, volume 9636 of LNCS, pages 407-423, 2016.

GM (DCS @ UIBK) September 5, 2017 17/23

http://vsl2014.at/olympics/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Transformation Based Runtime Complexity Analysis

complexity reflecting

program P .
transformation
let rec fold_left f acc — function -
rev(xs) — rev/(xs, nil)
0 — acc V(nil, acc) -
x:ixs — fold_left £ (f acc x) xs ;; ': ,(""vacjs ac;;: e(xs,x 5 acc)
let rev 1 = fold_left (fun xs x — x::xs) (] 1 ;3 revix s xs, revixs, x

September 5, 2017

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Transformation Based Runtime Complexity Analysis

complexity reflecting

rogram P
prog transformation

let rec fold_left f acc = function
0 — ace
x::xs — fold_left f (f acc x) xs ;;
let rev 1 = fold_left (fun xs x — x::xs) [1 1 ;;

rev(xs) — rev!(xs, nil)
rev/(nil, acc) — acc

rev/(x :: xs,acc) — rev/(xs,x

acc)

rev(xs) — rev/(xs, nil)
rev/(nil, ace) — acc
rev/(x : xs,acc) - rev/(xs,x :: acc)

asymptotic
bound

GM (DCS @ UIBK) September 5, 2017

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Transformation Based Runtime Complexity Analysis

complexity reflecting

rogram P
prog transformation

let rec fold_left f acc = function
0 — ace
x::xs — fold_left f (f acc x) xs ;;
let rev 1 = fold_left (fun xs x — x::xs) [1 1 ;;

rev(xs) — rev!(xs, nil)
rev/(nil, acc) — acc

rev/(x :: xs,acc) — rev/(xs,x

acc)

asymptotic
bound

rev(xs) — rev/(xs, nil)
rev/(nil, ace) — acc
rev/(x : xs,acc) - rev/(xs,x :: acc)

Definition
® a transformation is complexity reflecting,
if upper bound is reflected

® complexity preserving, if lower bound is preserved

GM (DCS @ UIBK) September 5, 2017

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example Run of tct-hoca
® textbook example rev

let rec fold_left f acc = function
[0 — acc
| zi:izs — fold_left f (f acc z) zs ;;
let rev | = fold_left (fun zs z — z::xzs) [1 [;;

GM (DCS @ UIBK) September 5, 2017

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example Run of tct-hoca
® textbook example rev

let rec fold_left f acc = function
[0 — acc
| zi:izs — fold_left f (f acc z) zs ;;
let rev | = fold_left (fun zs z — z::xzs) [1 [;;

e defunctionalised applicative rewrite system

main(xg) — mi(xp) @ f r(x0) @x1 — x0 @r; @[] @ xg
m1(x0) @ x; — m2(xp) @ r(x1) r @ xg — ra(xo)
mz(xp) @ x1 — X1 @ xp ra(xo) @ x1 — x1 3 Xp
fexg—f@xp f3(x0, x1) @ x2 — fa(x2, X0, X1)
f1 @ x1 — fa(x1) fa([1, X0, x1) — x1
fa(x1) @ xo — f3(x1, x2) fa(xo 2 x1,x2,x3) = f @ x1 @ (x2 @ x3 @Xxp) @x

GM (DCS @ UIBK) September 5, 2017

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example Run of tct-hoca
® textbook example rev

let rec fold_left f acc = function
[0 — acc
| zi:izs — fold_left f (f acc z) zs ;;
let rev | = fold_left (fun zs = — z::zs) [1 [;;

e defunctionalised applicative rewrite system

main(xg) — mi(xp) @ f r(x0) @x1 — x0 @r; @[] @ xg
m1(x0) @ x; — m2(xp) @ r(x1) r @ xg — ra(xo)
mz(xp) @ x1 — X1 @ xp ra(xo) @ x1 — x1 3 Xp
fexg—f@xp f3(x0, x1) @ x2 — fa(x2, X0, X1)
f1 @ x1 — fa(x1) fa([1, X0, x1) — x1
fa(x1) @ xo — f3(x1, x2) fa(xo 2 x1,x2,x3) = f @ x1 @ (x2 @ x3 @Xxp) @x

e Simplified first-order term rewrite system

main(xp) — f(nil, xp) f(xo, nil) = xo f(x0, x1 2 x2) = f(x1 X0, X2)

GM (DCS @ UIBK) September 5, 2017 19/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example Run of tct-hoca
® textbook example rev

let rec fold_left f acc = function
0 — acc
| zi:izs — fold_left f (f acc z) zs ;;
let rev | = fold_left (fun zs = — z::zs) [1 [;;

e defunctionalised applicative rewrite system

main(xg) — mi(xp) @ f r(x0) @x1 — x0 @r; @[] @ xg
m1(x0) @ x; — m2(xp) @ r(x1) r @ xg — ra(xo)
mz(xp) @ x1 — X1 @ xp ra(xo) @ x1 — x1 3 Xp
fexg—f@xp f3(x0, x1) @ x2 — fa(x2, X0, X1)
f1 @ x1 — fa(x1) fa([1, X0, x1) — x1
fa(x1) @ xo — f3(x1, x2) fa(xo 2 x1,x2,x3) = f @ x1 @ (x2 @ x3 @Xxp) @x

e Simplified first-order term rewrite system

main(xp) — f(nil, xp) f(xo, nil) = xo f(x0, x1 2 x2) = f(x1 X0, X2)

@ says

the runtime complexity of rev is O(n) ...if TcT is sound

GM (DCS @ UIBK) September 5, 2017 19/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Transformation Based Runtime Complexity Analysis

Experimental Evidence

constant linear quadratic polynomial terminating

systems 2 14 18 20 25
HoCA time 4.56 4.56 4.56 4.56 6.48
FOP time 0.79 14.00 30.12 60.10 3.43

GM (DCS @ UIBK) September 5, 2017 20/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Transformation Based Runtime Complexity Analysis

Experimental Evidence

constant linear quadratic polynomial terminating

systems 2 14 18 20 25

HoCA time 4.56 4.56 4.56 4.56 6.48

FOP time 0.79 14.00 30.12 60.10 3.43
Testbed

comprises 25 examples, for example including
rev, foldl, map, ...
merge-sort using a higher-order divide-and-conquer combinator

simple parsers relying on the monadic parser-combinator outlined in
Okasaki's functional pearl

complexity is tested with TcT; termination with T7To

GM (DCS @ UIBK) September 5, 2017 20/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Transformation Based Runtime Complexity Analysis

Tyrolean Complexity TooI (tct-trs, tct-hoca)

T, . resource

E program time ...
[PCF, ocaml f §
j * fully automated resource
: - analysis tool
J2 ® open source under BSD3
[}
5 ® implemented in Haskell
L tct-hoca
® competitive for higher-order
| libraries || tct-core | functional programs

SR OTTAS RN l ° employs SMT_Solvers ||ke
T NG 7 A E minismt or Z3

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Transformation Based Runtime Complexity Analysis

Tyrolean Complexity TooI (tct-trs, tct-hoca)

i resource :
program time ... :
:[PCF, ocam1 : :
n
9
I
e}
Q
*
|Iibraries || tct-core |

@ M. Avanzini, U. Dal Lago, and GM.

fully automated resource
analysis tool

open source under BSD3
implemented in Haskell

competitive for higher-order
functional programs

employs SMT-solvers like
minismt or Z3

Analysing the complexity of functional programs: higher-order meets first-order.
In Proc. 20th ICFP, pages 152-164. ACM, 2015.

GM (DCS @ UIBK) September 5, 2017 21/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Transformation Based Runtime Complexity Analysis

Tyrolean Complexity TooI (tct-trs, tct-hoca)

i resource :

program [time ...

[PCF, ocan1 f §

j * fully automated resource
: - analysis tool
J2 ® open source under BSD3
[}
5 ® implemented in Haskell
L tct-hoca

[] I
| libraries || tct-core |

B M. Avanzini, U. Dal Lago, and G
Analysing the complexity of functional programs: higher-order meets first-order.
In Proc. 20th ICFP, pages 152-164. ACM, 2015.

GM (DCS @ UIBK) September 5, 2017 21/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Uniform Resource Analysis

g says

this is all very exciting, but what about real programs?

GM (DCS @ UIBK) September 5, 2017

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Uniform Resource Analysis

ﬁ says

this is all very exciting, but what about real programs?

ﬁ says

well, if you insist ...

GM (DCS @ UIBK) September 5, 2017

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Uniform Resource Analysis

ﬁ says

this is all very exciting, but what about real programs?

ﬁ says

well, if you insist ...

Example

public static void test(int n, int m){
if (0<n & n <m {
int j = n+1;
while(j <n || j > n){
if (3 > mA{
3=0;
} else {
j=j+1;
13}

GM (DCS @ UIBK) September 5, 2017

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Uniform Resource Analysis

Remarks
® suppose n < m: while loop is executed as long as j # n holds

® automation requires disjunctive bounds

GM (DCS @ UIBK) September 5, 2017 23/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Uniform Resource Analysis

Remarks
® suppose n < m: while loop is executed as long as j # n holds

® automation requires disjunctive bounds

Definition
integer transition systems (aka transition systems) are sets of rules

® restricted to shallow terms consisting of function symbols and only
variables as arguments

® constraints on variables

GM (DCS @ UIBK) September 5, 2017 23/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Uniform Resource Analysis

Remarks
® suppose n < m: while loop is executed as long as j # n holds

® automation requires disjunctive bounds

Definition
integer transition systems (aka transition systems) are sets of rules

® restricted to shallow terms consisting of function symbols and only
variables as arguments

® constraints on variables

Example

start(m,n,j) — while(m,n,n+1) :|: m >n && n > 0
while(m,n,j) — while(m,n,0) :n>08&& j>n &k j>mn
while(m,n,j) — while(m,n,j+1) :|: n>0&% j>n & j < m
while(m,n,j) — while(m,n,j+1) :|: n >0 &% j<n & j < m

GM (DCS @ UIBK) September 5, 2017 23/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Uniform Resource Analysis

Uniform Resource Analysis by Rewriting
TcT

program B resource

:[C, JBC, .. | iftime, WCET,... | :
‘| [Haskell, OCaml, J | [heap, size, ... :

e fully automated resource
analysis tool

® competitive for higher-order
functional programs,
occasionally competitive for
object-oriented bytecode
programs

® intertwined resource analysis
framework

@ GM and M. Schaper.
From Jinja Bytecode to Term Rewriting: A Complexity Reflecting Transformation.
IC. To appear.

GM (DCS @ UIBK) September 5, 2017 24/23

http://aprove.informatik.rwth-aachen.de/
http://cliplab.org/~clip/Software/Ciao/ciaopp-1.2.0.html/ciaopp_ref_man.html
http://costa.ls.fi.upm.es/web/
http://costa.ls.fi.upm.es/web/saco.php
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Uniform Resource Analysis

Uniform Resource Analysis by Rewriting
TcT

program B resource

:[C, J3BC, .. | iftime, WCET,... | :
‘| [Haskell, OCaml, J | [heap, size, ... :

e fully automated resource
analysis tool

® competitive for higher-order
functional programs,
occasionally competitive for
object-oriented bytecode
programs

® intertwined resource analysis
framework

@ GM and M. Schaper.
From Jinja Bytecode to Term Rewriting: A Complexity Reflecting Transformation.
IC. To appear.

GM (DCS @ UIBK) September 5, 2017 24/23

http://aprove.informatik.rwth-aachen.de/
http://cliplab.org/~clip/Software/Ciao/ciaopp-1.2.0.html/ciaopp_ref_man.html
http://costa.ls.fi.upm.es/web/
http://costa.ls.fi.upm.es/web/saco.php
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Uniform Resource Analysis

Uniform Resource Analysis
TcT, AProVE, CiaoPP, COSTA, SACO, ...

program B resource

:[C, J3BC, .. | iftime, WCET,... | :
‘| [Haskell, OCaml, J | [heap, size, ... :

e fully automated resource
analysis tool

® competitive for higher-order
functional programs,
occasionally competitive for
object-oriented bytecode
programs

® intertwined resource analysis
framework

@ GM and M. Schaper.
From Jinja Bytecode to Term Rewriting: A Complexity Reflecting Transformation.
IC. To appear.

GM (DCS @ UIBK) September 5, 2017 24/23

http://aprove.informatik.rwth-aachen.de/
http://cliplab.org/~clip/Software/Ciao/ciaopp-1.2.0.html/ciaopp_ref_man.html
http://costa.ls.fi.upm.es/web/
http://costa.ls.fi.upm.es/web/saco.php
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Uniform Resource Analysis

Uniform Resource Analysis
TcT, AProVE, CiaoPP, COSTA, SACO, ...

program B resource

:[C, J3BC, .. | iftime, WCET,... | :
‘| [Haskell, OCaml, J | [heap, size, ... :

e fully automated resource
analysis tool

® competitive for higher-order
functional programs,
occasionally competitive for
object-oriented bytecode
programs

® intertwined resource analysis
framework

@ GM and M. Schaper.
From Jinja Bytecode to Term Rewriting: A Complexity Reflecting Transformation.
IC. To appear.

GM (DCS @ UIBK) September 5, 2017 24/23

http://aprove.informatik.rwth-aachen.de/
http://cliplab.org/~clip/Software/Ciao/ciaopp-1.2.0.html/ciaopp_ref_man.html
http://costa.ls.fi.upm.es/web/
http://costa.ls.fi.upm.es/web/saco.php
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Uniform Resource Analysis

Uniform Resource Analysis
TcT, AProVE, CiaoPP, COSTA, SACO, ...

: program : resource :
R : [time, WeET,] |
Lﬂaskell, OCaml, J i | |heap, size -]:
: ; resource
AT ¢ e ¢
igher-order
ms,
| |petitive for
& ytecode

rce analysis

@ GM and M. Schaper.
From Jinja Bytecode to Term Rewriting: A Complexity Reflecting Transformation

IC. To appear.
GM (DCS @ UIBK) September 5, 2017 24/23

http://aprove.informatik.rwth-aachen.de/
http://cliplab.org/~clip/Software/Ciao/ciaopp-1.2.0.html/ciaopp_ref_man.html
http://costa.ls.fi.upm.es/web/
http://costa.ls.fi.upm.es/web/saco.php
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Related Work

Multivariate Amortised Resource Analysis

J. Hoffmann, K. Aehlig, and M. Hofmann.
Multivariate amortized resource analysis.
TOPLAS, 34(3):14, 2012.

J. Hoffmann, A. Das, and S-C. Weng.
Towards automatic resource bound analysis for OCaml.
In Proc. 44th POPL, pages 359-373. ACM, 2017.

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Related Work

Multivariate Amortised Resource Analysis

@ J. Hoffmann, K. Aehlig, and M. Hofmann.
Multivariate amortized resource analysis.
TOPLAS, 34(3):14, 2012.

@ J. Hoffmann, A. Das, and S-C. Weng.
Towards automatic resource bound analysis for OCaml.
In Proc. 44th POPL, pages 359-373. ACM, 2017.

Results

® state-of-the-art automated resource analysis tool for higher-order
functional programs

® type system based, embodying an amortised analysis
® best-case lower bound and worst-case upper bound analysis

® precise, multivariate bounds

GM (DCS @ UIBK) September 5, 2017 25/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Related Work

Multivariate Amortised Resource Analysis

@ J. Hoffmann, K. Aehlig, and M. Hofmann.
Multivariate amortized resource analysis.
TOPLAS, 34(3):14, 2012.

@ J. Hoffmann, A. Das, and S-C. Weng.
Towards automatic resource
In Proc. 44th POPL, pages 3

Results

® state-of-the-art automated r

functional programs
® type system based, embodyirg an amortised analysis

® best-case lower bound and worst-case upper bound analysis

gher-order

® precise, multivariate bounds

GM (DCS @ UIBK) September 5, 2017 25/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Related Work

Simple and Scalable Static Analysis

M. Sinn, F. Zuleger, and H. Veith.
A simple and scalable static analysis for bound analysis and

amortized complexity analysis.
In Proc. 26th CAV, volume 8559 of LNCS, pages 745-761, 2014.

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Related Work

Simple and Scalable Static Analysis

@ M. Sinn, F. Zuleger, and H. Veith.
A simple and scalable static analysis for bound analysis and

amortized complexity analysis.
In Proc. 26th CAV, volume 8559 of LNCS, pages 745-761, 2014.

Results

® whole program analysis (not composable) for C (LLVM)

® employs vector addition systems with states for program abstraction
in conjunction with the synthesis of lexicographic ranking functions

o effective on realistically sized benchmarks and outperforms existing
tools (for C or integer transition systems)

® requires the use of additional invariant generations and shape
analysis)

GM (DCS @ UIBK) September 5, 2017 26/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Related Work

Simple and Scalable Static Analysis

@ M. Sinn, F. Zuleger, and H. Veith.
A simple and scalable static analysis for bound analysis and
amortized complexity analysis.

Results

® whole program analysis
ction
ons

® employs vector addition
in conjunction with the ¢

e effective on realistically sized b%arks and outperforms existing
tools (for C or integer transition’ systems)

® requires the use of additional invariant generations and shape
analysis)

GM (DCS @ UIBK) September 5, 2017 26/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Recent Challenge and Work in Progress

Challenge by Tobias Nipkow (FSCD'16)

Martin and Georg: this is all very well what you have done with
RaML and TcT, but what about real amortised analyses like Tar-
jan and Sleator’s splay trees?

GM (DCS @ UIBK) September 5, 2017 27/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Recent Challenge and Work in Progress

Definition (Splaying, interesting cases)
SR £ O

b<l — /b\/a\/c\
U YYY

s

GM (DCS @ UIBK) September 5, 2017

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Amortised Complexity Analysis
Definition
the potential of a tree is defined as follows
®(nil) ;=0
d((t, a, u)) == d(t) + log(|t] + |u|) + P(u)

where size |t| denotes the number of leaves of ¢

GM (DCS @ UIBK) September 5, 2017 29/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Amortised Complexity Analysis
Definition
the potential of a tree is defined as follows
®(nil) ;=0
d((t, a, u)) == d(t) + log(|t] + |u|) + P(u)

where size |t| denotes the number of leaves of ¢

Definition
the amortised cost of splaying is defined as
A(splay a t) = T(splay a t) + ®(splay a t) — ®(t)

GM (DCS @ UIBK) September 5, 2017 29/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Amortised Complexity Analysis
Definition
the potential of a tree is defined as follows
®(nil) ;=0
d((t, a, u)) == d(t) + log(|t] + |u|) + P(u)

where size |t| denotes the number of leaves of ¢

Definition
the amortised cost of splaying is defined as
A(splay a t) = T(splay a t) + ®(splay a t) — ®(t)

Lemma (Sleator, Tarjan)
A(splay at) <1+ 3log(|t|)

GM (DCS @ UIBK) September 5, 2017 29/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

A Type System for Amortised Resource Analysis

Preprocessing

® assume a size analysis, resulting in a function types over sized types,
for example splay: Ax T, = T,

® the sized type T, contains trees of exactly size n

GM (DCS @ UIBK) September 5, 2017 30/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

A Type System for Amortised Resource Analysis

Preprocessing

® assume a size analysis, resulting in a function types over sized types,
for example splay: Ax T, = T,

® the sized type T, contains trees of exactly size n

Definitions
® let I denote a typing context and let ' D {T,,,..., Ty, }
® a size polynomial over I is a multivariate polynomial over ny,..., ng

® p>qiffVny, ..., ng
log(p(n,...,nk)) = log(q(ni,...,nj))

® an annotated signature decorates function types with size

polynomials
342
splay:Ax T, —— T,

GM (DCS @ UIBK) September 5, 2017 30/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Recent Challenge and Work in Progress

Definition (Type System (selection))
n=k+1/
Ii nil: Ty x1: Tr,x0: A, x3: T Iﬂ (x1,%2,x3): Thp
r) r
|—q1(~e:D Ty x: p &) e:C g-q@<p
o,
r1,|—2|L19tX: e in e: C
m=k+1/
r T2)-(k+1
M Iﬁ er: C To,xp: Ty, x: Ay x3: Ty @) () e:C q,p<p
M,l2,m)
M,Mo,x: Ty oll1,T2,m) match x with |nil-—ep|(x1, x2, x3)—ep: C

GM (DCS @ UIBK) September 5, 2017 31/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Definition (Type System (selection))

n=k+1/
Ii nil: Ty x1: Tr,x0: A, x3: T Iﬂ (x1,%2,x3): Thp
r) r
|—q1(~e:D Ty x: p &) e:C g-q@<p
o,
M, 1o pTLT) let x = e in ex: C
m=k+1/
r T2)-(k+1
M lﬁel: C Toxi: T, x: Axa: Ty @) () e:C q,p<p
M,l2,m)
M,Mo,x: Ty oll1,T2,m) match x with |nil-—ep|(x1, x2, x3)—ep: C

Definition
P is called well-typed if V f(x1,...,xx) = e € P and
VGx--xCGB CeF()

X1:C1,...,xk:Ck|£e:C

GM (DCS @ UIBK) September 5, 2017 31/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Recent Challenge and Work in Progress

Theorem

Let T be a typing context and o a substitution consistent with T.
p(l .

Suppose o lﬂ e=vandl lL e: C; we obtain:

®(a,T) + log(p()) — ®(v) = m.

Proof.
Let = denote the derivation of o Iﬂ e = v and I1 denote the proof of

C
r IM e: C. The theorem is proven by main induction on |[1| and side
induction on |=| [|

GM (DCS @ UIBK) September 5, 2017 32/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Recent Challenge and Work in Progress

Theorem

Let T be a typing context and o a substitution consistent with T.
p(l .

Suppose o lﬂ e=vandl lL e: C; we obtain:

®(a,T) + log(p()) — ®(v) = m.

Proof.

Let = denote the derivation of o Iﬂ e = v and I1 denote the proof of

C
r IM e: C. The theorem is proven by main induction on |[1| and side

induction on |=| IJ

Example

consider the function splay: A x T, — T,, defining splaying recursively,
then splay is well-typed

GM (DCS @ UIBK) September 5, 2017 32/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Strengths of Uniform Resource Analysis

® modularity and extensiblity

® complexity problems
® intermediary languages

® divide and conquer
® applications

GM (DCS @ UIBK) September 5, 2017 33/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Strengths of Uniform Resource Analysis

® modularity and extensiblity

® complexity problems
® intermediary languages

® divide and conquer
® applications

Weaknesses
® extensibility and modularity require abstraction

® abstraction may weaken proving power and may require more work

® constant amortised analysis (see paper)
® |ogarithmic amortised analysis

GM (DCS @ UIBK) September 5, 2017 33/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Strengths of Uniform Resource Analysis

® modularity and extensiblity

® complexity problems
® intermediary languages

® divide and conquer
® applications

Weaknesses
® extensibility and modularity require abstraction

® abstraction may weaken proving power and may require more work

® constant amortised analysis (see paper)
® |ogarithmic amortised analysis

advice to students: don't listen to advice!

GM (DCS @ UIBK) September 5, 2017 33/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Thank You for Your Attention!

GM (DCS @ UIBK) September 5, 2017

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

