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Motivation

A Textbook Example

Example

let rec fold_left f acc = function

[] → acc
| x::xs → fold_left f ( f acc x) xs ;;

let rev l = fold_left (fun xs x → x::xs) [] l ;;

says

What is the complexity of rev?

says

Ahem, I’m so sorry, but what do you mean by “complexity”?

says

Sigh, runtime complexity, of course!
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Motivation

Runtime Complexity, Of Course!

Example (revisited)

rev(xs)→ rev′(xs, nil) rev′(nil, acc)→ acc

rev′(x :: xs, acc)→ rev′(xs, x :: acc)

Definitions
• a term rewrite system (TRS) R is a finite set of rules

• a computation of R is the application of the rules from left to right

Example

rev(1 :: 2 :: 3 :: nil)→R rev′(1 :: 2 :: 3 :: nil, nil)

→R rev′(2 :: 3 :: nil, 1 :: nil)

→∗R rev′(nil, 3 :: 2 :: 1 :: nil)

→R 3 :: 2 :: 1 :: nil
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Motivation

Definition

a TRS R is terminating if →R is well-founded

Definitions
• a function symbol f is called defined if it occurs as the root symbol

on the left of a rule, otherwise f is called constructor

• values are terms made up from constructors and variables

Definition

we define the runtime complexity wrt. a terminating R:

dhR(t) = max{n | ∃u t →n
R u}

rcR(n) = max{dhR(t) | size of t 6 n and t is basic}
a term f (t1, . . . , tn) is basic if f is defined and all ti are values

Example (continued)
we obtain rcR ∈ O(n)
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Scenic Tour

Historic Detour: Derivational Complexity Analysis

says

thank you very much for the explanation, but is runtime complexity a
natural notion for rewriting?

Example

consider the following set of rules
d(g(0, 0), y)→ e(0) h(e(x), y)→ h(d(x , y), s(y))

d(g(x , y), z)→ g(e(x), d(y , z)) g(e(x), e(y))→ e(g(x , y))

d(g(g(x , y), 0), s(z))→ g(d(g(x , y), s(z)), d(g(x , y), z))

says

ahem, actually no
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Scenic Tour

Definitions
• we define the derivational complexity wrt. a terminating R:

dcR(n) = max{dhR(t) | size of t 6 n}

• method X induces derivational complexity from class C if

“R terminating by X” implies dcR ∈ C

Theorem

the multiset path order induces primitive recursive derivational
complexity and primitive recursive runtime complexity

D. Hofbauer and C. Lautemann.
Termination proofs and the length of derivations.
In Proc. 3rd RTA, volume 355 of LNCS, pages 167–177, 1989.

D. Hofbauer.
Termination proofs by multiset path orderings imply primitive recursive derivation
lengths.
TCS, 105:129–140, 1992.
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Scenic Tour

The Multiset Path Order

let > denote a precedence; > induces order >mpo:

s = f (s1, . . . , sn) >mpo t if either

1 ∃i si >mpo t >mpo

2 t = f (t1, . . . , tn) and
f f

>mpo

{{s1, . . . , sn}} >mul
mpo{{t1, . . . , tn}}

3 t = g(t1, . . . , tm) with f > g and
f g

>mpo
∀i s >mpo ti
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Scenic Tour

Theorem
• polynomial interpretations induce double-exponential derivational

complexity

• lexicographic path orders induce multiple recursive functions

• DP framework in conjunction with the subterm criterion induces
multiple recursive functions

• simplification orders induce functions elementary in HΛ, where
Λ ≫ ε0

• . . .

I. Lepper.
Simply terminating rewrite systems with long derivations.
Arch. Math. Logic, 43:1–18, 2004.

A. Weiermann.
Complexity bounds for some finite forms of Kruskal’s theorem.
JSC, 18(5):463–488, November 1994.
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Scenic Tour

Example (revisited)

d(g(0, 0), y)→ e(0) h(e(x), y)→ h(d(x , y), s(y))

d(g(x , y), z)→ g(e(x), d(y , z)) g(e(x), e(y))→ e(g(x , y))

d(g(g(x , y), 0), s(z))→ g(d(g(x , y), s(z)), d(g(x , y), z))

The Hydra Battle by Kirby and Paris

1 the beast is a finite tree, each leaf corresponds to a head; Hercules
chops off heads of the Hydra, but the Hydra regrows:
• if the cut head has a pre-predecessor, then the remaining subtree

issued from this node is multiplied by the stage of the game.

• otherwise the Hydra ignores the loss.

2 Hercules wins, when the beast is reduced to the empty tree.

Theorem

termination of the battle is independent: PA 6` the battle terminates
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Scenic Tour

Example

(H1, 1)

Hω3+ω2+1 �ed

(H2, 2)

Hω3+ω2 �ed

(H3, 3)

Hω2·3

Remark
• based on the game, Dershowitz and Jouannaud designed the TRS as

a challenging termination problem

• however, the implementation is buggy and has later been rectified by
Dershowitz
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Scenic Tour

Example

h(e(x), y)→ h(d(x , y), s(y)) (α, n) =⇒ (αn, n + 1)

d(g(g(0, x), y), 0)→ e(y) strategy of the game

d(g(0, x), y)→ e(x)

d(g(x , y), z)→ g(d(x , z), e(y))

d(g(g(0, x), y), s(z))→ g(e(x), d(g(g(0, x), y), z))

g(e(x), e(y))→ e(g(x , y)) auxiliary rule

Remark
• based on the game, Dershowitz and Jouannaud designed the TRS as

a challenging termination problem

• however, the implementation is buggy and has later been rectified by
Dershowitz
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Scenic Tour

RTALooP # 23

Must any termination ordering used for proving termination of
the Battle of Hydra and Hercules-system have the Howard[-
Bachmann] ordinal as its order type?a

ahttp://www.win.tue.nl/rtaloop/.

Cichon’s Conjecture

The derivational complexity induced by any termination order of order type
α is bounded by the slow-growing hierarchy indexed by α

Answer

No.

GM.
The Hydra battle and Cichon’s principle.
AAECC, 20(2):133–158, 2009.
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The derivational complexity induced by any termination order of order type
α is bounded by the slow-growing hierarchy indexed by α

Answer

No.

GM.
The Hydra battle and Cichon’s principle.
AAECC, 20(2):133–158, 2009.
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Runtime Complexity Analysis

says

aha, coming back to runtime complexity, I found the following . . .
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Runtime Complexity Analysis

says

indeed, TCT can fully automatically handle the TRS, for example using a
method called matrix interpretations

Definition

a matrix interpretation of dimension n is a pair M = (Nn, >) such that

1 ∀ f ∈ F :

fM(~v1, . . . , ~vk) = M1~v1 + . . .+ Mk~vk + ~f

2 the Mi are square matrices such that (Mi )1,1 > 1

3 the order > is defined as:

(x1, x2, . . . , xn)>>(y1, y2, . . . , yn)>

if x1 > y1 and ∀ i > 2: xi > yi
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Runtime Complexity Analysis

Example

consider the TRS (x ◦ y) ◦ z → x ◦ (y ◦ z) together with the matrix
interpretation M

◦M(~x , ~y) =

(
1 1
0 1

)
· ~x +

(
1 0
0 1

)
· ~y +

(
0
1

)

we obtain ∀ assignments to the variables:

[(x ◦ y) ◦ z)] > [(x ◦ (y ◦ z))]

we say M is compatible with the TRS

Observation

t = t0 →R t1 →R t2 →R t3 →R t4 →R · · ·
implies

([t])1 > ([t1])1 > ([t2])1 > ([t3])1 > · · ·

for compatible matrix interpretations M
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Runtime Complexity Analysis

Definition

let M denote a matrix interpretation and let

M = max{Mi | Mi a square matrix used in fM}

then M is called maximums matrix of M

Theorem

let M be a matrix interpretation of dimension d compatible with a TRS
R and let M be the maximum matrix of M, if the spectral radius
ρ(M) 6 1, then rcR ∈ O(nd)

Proof.

by linear algebra, for example Jordan Normal Form Theorem

A. Middeldorp, GM, F. Neurauter, J. Waldmann, and H. Zankl.
Joint spectral radius theory for automated complexity analysis of rewrite systems.
In Proc. 4th CAI, volume 6742 of LNCS, pages 1–20, 2011.
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Runtime Complexity Analysis

Tyrolean Complexity Tool (tct-trs)

t
c
t
-
t
r
s

libraries tct-core

complexity bound / failure

• fully automated complexity
analysis tool for TRSs

• recipient of a Gödel medal in
the 1st FLOC Olympic games

• modular complexity analysis
framework

• partly certified by CeTA

M. Avanzini, C. Sternagel, and R. Thiemann.
Certification of complexity proofs using CeTA.
In Proc. 26th RTA, volume 36 of LIPIcs, pages 23–39, 2015.

M. Avanzini and GM.
A combination framework for complexity.
IC, 248:22–55, 2016.

M. Avanzini, GM, and M. Schaper.
Tct: Tyrolean complexity tool.
In Proc. 22nd TACAS, volume 9636 of LNCS, pages 407–423, 2016.
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the 1st FLOC Olympic games

• modular complexity analysis
framework

• partly certified by CeTA

M. Avanzini, C. Sternagel, and R. Thiemann.
Certification of complexity proofs using CeTA.
In Proc. 26th RTA, volume 36 of LIPIcs, pages 23–39, 2015.

M. Avanzini and GM.
A combination framework for complexity.
IC, 248:22–55, 2016.

M. Avanzini, GM, and M. Schaper.
Tct: Tyrolean complexity tool.
In Proc. 22nd TACAS, volume 9636 of LNCS, pages 407–423, 2016.

GM (DCS @ UIBK) September 5, 2017 17/23

http://vsl2014.at/olympics/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Transformation Based Runtime Complexity Analysis

program P
complexity reflecting

transformation
TRS R

let rec fold_left f acc = function

[] → acc

| x::xs → fold_left f (f acc x) xs ;;

let rev l = fold_left (fun xs x → x::xs) [] l ;;

rev(xs)→ rev′(xs, nil)
rev′(nil, acc)→ acc
rev′(x :: xs, acc)→ rev′(xs, x :: acc)

TRS R automated resource analysis
asymptotic
bound

rev(xs)→ rev′(xs, nil)
rev′(nil, acc)→ acc
rev′(x :: xs, acc)→ rev′(xs, x :: acc)

O(n)

Definition
• a transformation is complexity reflecting,

if upper bound is reflected

• complexity preserving, if lower bound is preserved
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Transformation Based Runtime Complexity Analysis

Example Run of tct-hoca
• textbook example rev

let rec fold_left f acc = function

[] → acc
| x::xs → fold_left f ( f acc x) xs ;;

let rev l = fold_left (fun xs x → x::xs) [] l ;;

• defunctionalised applicative rewrite system

main(x0)→ m1(x0) @ f r(x0) @ x1 → x0 @ r1 @ [ ] @ x1

m1(x0) @ x1 → m2(x0) @ r(x1) r1 @ x0 → r2(x0)

m2(x0) @ x1 → x1 @ x0 r2(x0) @ x1 → x1 :: x0

f @ x0 → f1 @ x0 f3(x0, x1) @ x2 → f4(x2, x0, x1)

f1 @ x1 → f2(x1) f4([ ], x0, x1)→ x1

f2(x1) @ x2 → f3(x1, x2) f4(x0 :: x1, x2, x3)→ f @ x1 @ (x2 @ x3 @ x0) @ x2

• Simplified first-order term rewrite system

main(x0)→ f(nil, x0) f(x0, nil)→ x0 f(x0, x1 :: x2)→ f(x1 :: x0, x2)

says

the runtime complexity of rev is O(n) . . . if TCT is sound
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Transformation Based Runtime Complexity Analysis

Experimental Evidence

constant linear quadratic polynomial terminating

# systems 2 14 18 20 25
HoCA time 4.56 4.56 4.56 4.56 6.48
FOP time 0.79 14.00 30.12 60.10 3.43

Testbed

comprises 25 examples, for example including

1 rev, foldl, map, . . .

2 merge-sort using a higher-order divide-and-conquer combinator

3 simple parsers relying on the monadic parser-combinator outlined in
Okasaki’s functional pearl

complexity is tested with TCT; termination with TTT2
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Transformation Based Runtime Complexity Analysis

Tyrolean Complexity Tool (tct-trs, tct-hoca)

t
c
t
-
t
r
s

tct-hoca

libraries tct-core

PCF, OCaml

program
time . . .

resource

complexity bound / failure

• fully automated resource
analysis tool

• open source under BSD3

• implemented in Haskell

• competitive for higher-order
functional programs

• employs SMT-solvers like
minismt or Z3

M. Avanzini, U. Dal Lago, and GM.
Analysing the complexity of functional programs: higher-order meets first-order.
In Proc. 20th ICFP, pages 152–164. ACM, 2015.
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Uniform Resource Analysis

says

this is all very exciting, but what about real programs?

says

well, if you insist . . .

Example

public static void test(int n, int m){

if (0 < n && n < m) {

int j = n+1;

while(j < n | | j > n){

if (j > m){

j=0;
} else {

j=j+1;
}}}}
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Uniform Resource Analysis

Remarks
• suppose n < m: while loop is executed as long as j 6= n holds

• automation requires disjunctive bounds

Definition

integer transition systems (aka transition systems) are sets of rules

• restricted to shallow terms consisting of function symbols and only
variables as arguments

• constraints on variables

Example
start(m,n,j) → while(m,n,n+1) : |: m > n && n > 0

while(m,n,j) → while(m,n,0) : |: n > 0 && j > n && j > m

while(m,n,j) → while(m,n,j+1) : |: n > 0 && j > n && j ≤ m

while(m,n,j) → while(m,n,j+1) : |: n > 0 && j < n && j ≤ m
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Uniform Resource Analysis

Uniform Resource Analysis by Rewriting
TCT

, AProVE, CiaoPP, COSTA, SACO, . . .

t
c
t
-
t
r
s

tct-its

tct-hoca

libraries tct-core

C, JBC, . . .

Haskell, OCaml, . . .

program

time, WCET,. . .

heap, size, . . .

resource

complexity bound / failure

• fully automated resource
analysis tool

• competitive for higher-order
functional programs,
occasionally competitive for
object-oriented bytecode
programs

• intertwined resource analysis
framework

GM and M. Schaper.
From Jinja Bytecode to Term Rewriting: A Complexity Reflecting Transformation.
IC. To appear.
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Related Work

Multivariate Amortised Resource Analysis

J. Hoffmann, K. Aehlig, and M. Hofmann.
Multivariate amortized resource analysis.
TOPLAS, 34(3):14, 2012.

J. Hoffmann, A. Das, and S-C. Weng.
Towards automatic resource bound analysis for OCaml.
In Proc. 44th POPL, pages 359–373. ACM, 2017.

Results
• state-of-the-art automated resource analysis tool for higher-order

functional programs

• type system based, embodying an amortised analysis

• best-case lower bound and worst-case upper bound analysis

• precise, multivariate bounds
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Related Work

Simple and Scalable Static Analysis

M. Sinn, F. Zuleger, and H. Veith.
A simple and scalable static analysis for bound analysis and
amortized complexity analysis.
In Proc. 26th CAV, volume 8559 of LNCS, pages 745–761, 2014.

Results
• whole program analysis (not composable) for C (LLVM)

• employs vector addition systems with states for program abstraction
in conjunction with the synthesis of lexicographic ranking functions

• effective on realistically sized benchmarks and outperforms existing
tools (for C or integer transition systems)

• requires the use of additional invariant generations and shape
analysis
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Recent Challenge and Work in Progress

Challenge by Tobias Nipkow (FSCD’16)

Martin and Georg: this is all very well what you have done with
RaML and TCT, but what about real amortised analyses like Tar-
jan and Sleator’s splay trees?
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Recent Challenge and Work in Progress

Definition (Splaying, interesting cases)
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Recent Challenge and Work in Progress

Amortised Complexity Analysis

Definition

the potential of a tree is defined as follows

Φ(nil) := 0

Φ(〈t, a, u〉) := Φ(t) + log(|t|+ |u|) + Φ(u)

where size |t| denotes the number of leaves of t

Definition

the amortised cost of splaying is defined as

A(splay a t) = T (splay a t) + Φ(splay a t)− Φ(t)

Lemma (Sleator, Tarjan)

A(splay a t) 6 1 + 3 log(|t|)
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Recent Challenge and Work in Progress

A Type System for Amortised Resource Analysis

Preprocessing

• assume a size analysis, resulting in a function types over sized types,
for example splay: A× Tn → Tn

• the sized type Tn contains trees of exactly size n

Definitions
• let Γ denote a typing context and let Γ ⊇ {Tn1 , . . . ,Tnk}
• a size polynomial over Γ is a multivariate polynomial over n1, . . . , nk
• p > q iff ∀n1, . . . , nk

log(p(n1, . . . , nk)) > log(q(ni1 , . . . , nil ))

• an annotated signature decorates function types with size
polynomials

splay:A× Tn
n3+2−−−→ Tn
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Recent Challenge and Work in Progress

Definition (Type System (selection))

1
nil:T1

n = k + l

x1:Tk , x2:A, x3:Tl
k·l 〈x1, x2, x3〉:Tn

Γ1
q1(Γ1)

e1:D Γ2, x :D
q2(Γ2)

e2:C q1 · q2 6 p

Γ1, Γ2
p(Γ1,Γ2)

let x = e1 in e2:C

Γ1
q1(Γ1)

e1:C Γ2, x1:Tk , x2:A, x3:Tl
q2(Γ2)·(k+l)

e2:C
m = k + l
q1, q2 6 p

Γ1, Γ2, x :Tm
p(Γ1,Γ2,m)

match x with |nil→e1 |〈x1, x2, x3〉→e2:C

Definition

P is called well-typed if ∀ f (x1, . . . , xk) = e ∈ P and

∀ C1 × · · · × Ck
p−→ C ∈ F(f )

x1:C1, . . . , xk :Ck
p
e:C
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Recent Challenge and Work in Progress

Theorem

Let Γ be a typing context and σ a substitution consistent with Γ.

Suppose σ
m

e ⇒ v and Γ
p(Γ)

e:C; we obtain:

Φ(σ, Γ) + log(p(Γ))− Φ(v) > m .

Proof.

Let Ξ denote the derivation of σ
m

e ⇒ v and Π denote the proof of

Γ
p(Γ)

e:C . The theorem is proven by main induction on |Π| and side
induction on |Ξ|

Example

consider the function splay: A× Tn → Tn, defining splaying recursively,
then splay is well-typed
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Summary

Strengths of Uniform Resource Analysis

• modularity and extensiblity
• complexity problems
• intermediary languages

• divide and conquer

• applications

• . . .

Weaknesses
• extensibility and modularity require abstraction
• abstraction may weaken proving power and may require more work

• constant amortised analysis (see paper)
• logarithmic amortised analysis

• . . .

advice to students: don’t listen to advice!
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Summary

Thank You for Your Attention!
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