
Formal Methods for Quantum Programs

Martin Avanzini Georg Moser Romain Péchoux Simon Perdrix
Vladimir Zamdzhiev

https://tcs-informatik.uibk.ac.at

https://tcs-informatik.uibk.ac.at

A Bit of Context

R. V. Meter and C. Horsman.
A blueprint for building a quantum computer. Commun. ACM, 56(10):84–93, 2013.

Formal Methods for Quantum Programs, Theory colloquium, March 23, 2022 1

A Bit of Context

H. Briegel, D. Browne, W. Dür, R. Raussendorf, and M. V. den Nest. Measurement-based quantum
computation. Nature Physics, 5:19–26, 2009.

Formal Methods for Quantum Programs, Theory colloquium, March 23, 2022 1

A Bit of Context

P. Schindler, J. Barreiro, T. Monz, V. Nebendahl, D. Nigg, M. Chwalla, M. Hennrich, and R. Blatt.
Experimental repetitive quantum error correction. Science, 332(6033), 2011.

Formal Methods for Quantum Programs, Theory colloquium, March 23, 2022 1

A Bit of Context

V. Dunjko and H. Briegel.
Machine learning & artificial intelligence in the quantum domain. arXiv, (1709.02779), 2017.

Formal Methods for Quantum Programs, Theory colloquium, March 23, 2022 1

A Bit of Context

H. Miyahara, K. Aihara, and W. Lechner.
Quantum expectation-maximization algorithm. Physical Review A, 101(1), 2020.

Formal Methods for Quantum Programs, Theory colloquium, March 23, 2022 1

A Bit of Context

V. Torggler, P. Aumann, H. Ritsch, and W. Lechner.
A quantum n-queens solver. Quantum, 3(149), 2019.

Formal Methods for Quantum Programs, Theory colloquium, March 23, 2022 1

A Bit of Context

V. Danos, E. Kashefi, and P. Panangaden.
The measurement calculus. J. ACM, 54(2):8, 2007.

Formal Methods for Quantum Programs, Theory colloquium, March 23, 2022 1

A Bit of Context

P. Selinger.
Towards a quantum programming language. Math. Struct. Comput. Sci., 14(4):527–586, 2004.

Formal Methods for Quantum Programs, Theory colloquium, March 23, 2022 1

Motivation to Study Quantum Computation
Viewpoint of Computer Science

1 quantum effects allows us to break the “strong” form of the Church-Turing
thesis—any reasonable model of computation is efficiently computable by a
Turing machine

2 theoretical computer science is about the study of computation, regardless of the
physical device implementing this computation

3 since our understanding of the world is quantum mechanical, TCS has to study
quantum computers, not classical ones

4 more practically, much of cryptography becomes insecure in a quantum world,
while entanglement makes it possible to design unconditionally secure key
distribution: post-quantum cryptography

5 similarly, as quantum computers become the new normal, a theory of quantum
programming languages is crucially needed

Formal Methods for Quantum Programs, Theory colloquium, March 23, 2022 2

Motivation to Study Quantum Computation
Viewpoint of Computer Science

1 quantum effects allows us to break the “strong” form of the Church-Turing
thesis—any reasonable model of computation is efficiently computable by a
Turing machine

2 theoretical computer science is about the study of computation, regardless of the
physical device implementing this computation

3 since our understanding of the world is quantum mechanical, TCS has to study
quantum computers, not classical ones

4 more practically, much of cryptography becomes insecure in a quantum world,
while entanglement makes it possible to design unconditionally secure key
distribution: post-quantum cryptography

5 similarly, as quantum computers become the new normal, a theory of quantum
programming languages is crucially needed

Formal Methods for Quantum Programs, Theory colloquium, March 23, 2022 2

Motivation to Study Quantum Computation
Viewpoint of Computer Science

1 quantum effects allows us to break the “strong” form of the Church-Turing
thesis—any reasonable model of computation is efficiently computable by a
Turing machine

2 theoretical computer science is about the study of computation, regardless of the
physical device implementing this computation

3 since our understanding of the world is quantum mechanical, TCS has to study
quantum computers, not classical ones

4 more practically, much of cryptography becomes insecure in a quantum world,
while entanglement makes it possible to design unconditionally secure key
distribution: post-quantum cryptography

5 similarly, as quantum computers become the new normal, a theory of quantum
programming languages is crucially needed

Formal Methods for Quantum Programs, Theory colloquium, March 23, 2022 2

Motivation to Study Quantum Computation
Viewpoint of Computer Science

1 quantum effects allows us to break the “strong” form of the Church-Turing
thesis—any reasonable model of computation is efficiently computable by a
Turing machine

2 theoretical computer science is about the study of computation, regardless of the
physical device implementing this computation

3 since our understanding of the world is quantum mechanical, TCS has to study
quantum computers, not classical ones

4 more practically, much of cryptography becomes insecure in a quantum world,
while entanglement makes it possible to design unconditionally secure key
distribution: post-quantum cryptography

5 similarly, as quantum computers become the new normal, a theory of quantum
programming languages is crucially needed

Formal Methods for Quantum Programs, Theory colloquium, March 23, 2022 2

Motivation to Study Quantum Computation
Viewpoint of Computer Science

1 quantum effects allows us to break the “strong” form of the Church-Turing
thesis—any reasonable model of computation is efficiently computable by a
Turing machine

2 theoretical computer science is about the study of computation, regardless of the
physical device implementing this computation

3 since our understanding of the world is quantum mechanical, TCS has to study
quantum computers, not classical ones

4 more practically, much of cryptography becomes insecure in a quantum world,
while entanglement makes it possible to design unconditionally secure key
distribution: post-quantum cryptography

5 similarly, as quantum computers become the new normal, a theory of quantum
programming languages is crucially needed

Formal Methods for Quantum Programs, Theory colloquium, March 23, 2022 2

Quantum Programming Languages

Program and Resource Analysis

Expected Cost Analysis for Quantum Programs

Quantum Programming Languages

Formal Methods for Quantum Programs, Theory colloquium, March 23, 2022 2

Requirements for Quantum Programming Languages

Allocation and Measurement

• allocate and measure quantum registers

• apply unitary operations

Reasoning about Subroutines

• defining and calling subroutines

• reversing subroutines

Building Quantum Oracles

• build quantum oracles from classical functions

Formal Methods for Quantum Programs, Theory colloquium, March 23, 2022 3

Requirements for Quantum Programming Languages

Allocation and Measurement

• allocate and measure quantum registers

• apply unitary operations

Reasoning about Subroutines

• defining and calling subroutines

• reversing subroutines

Building Quantum Oracles

• build quantum oracles from classical functions

Formal Methods for Quantum Programs, Theory colloquium, March 23, 2022 3

Requirements for Quantum Programming Languages

Allocation and Measurement

• allocate and measure quantum registers

• apply unitary operations

Reasoning about Subroutines

• defining and calling subroutines

• reversing subroutines

Building Quantum Oracles

• build quantum oracles from classical functions

Formal Methods for Quantum Programs, Theory colloquium, March 23, 2022 3

Quantum Data Types

• data types allow to reason abstractly

• (quantum) data types allow for static type checking thus providing compile-time
guarantees

Specification and Verification

• formal specification and verification

• operational or denotational semantics

Resource Sensitivity and Resource Estimation

• estimation of resource requirements (eg. number of elementary gates, expected
runtime)

• transparancies of quantum error correction

Formal Methods for Quantum Programs, Theory colloquium, March 23, 2022 4

Quantum Data Types

• data types allow to reason abstractly

• (quantum) data types allow for static type checking thus providing compile-time
guarantees

Specification and Verification

• formal specification and verification

• operational or denotational semantics

Resource Sensitivity and Resource Estimation

• estimation of resource requirements (eg. number of elementary gates, expected
runtime)

• transparancies of quantum error correction

Formal Methods for Quantum Programs, Theory colloquium, March 23, 2022 4

Quantum Data Types

• data types allow to reason abstractly

• (quantum) data types allow for static type checking thus providing compile-time
guarantees

Specification and Verification

• formal specification and verification

• operational or denotational semantics

Resource Sensitivity and Resource Estimation

• estimation of resource requirements (eg. number of elementary gates, expected
runtime)

• transparancies of quantum error correction

Formal Methods for Quantum Programs, Theory colloquium, March 23, 2022 4

Selinger’s Quantum Programming Language
Quantum Flow Language

input p, q : qbit

measure p

q ∗= X p ∗= X

◦

output p, q : qbit

p, q : qbit

0 1

p, q : qbit p, q : qbit

p, q : qbit p, q : qbit

p, q : qbit

F : D22 → D22 1/
√

2 |00〉 + 1/
√

2 |01〉1/
√

2 |00〉 + 1/
√

2 |10〉

F

1/
√

2 |00〉 + 1/
√

2 |01〉1/
√

2{|01〉} + 1/
√

2{|00〉}

Formal Methods for Quantum Programs, Theory colloquium, March 23, 2022 5

Selinger’s Quantum Programming Language
Quantum Flow Language

input p, q : qbit

measure p

q ∗= X p ∗= X

◦

output p, q : qbit

p, q : qbit

0 1

p, q : qbit p, q : qbit

p, q : qbit p, q : qbit

p, q : qbit

F : HQ
?−→ HQ

F : D22 → D22 1/
√

2 |00〉 + 1/
√

2 |01〉1/
√

2 |00〉 + 1/
√

2 |10〉

F

1/
√

2 |00〉 + 1/
√

2 |01〉1/
√

2{|01〉} + 1/
√

2{|00〉}

Formal Methods for Quantum Programs, Theory colloquium, March 23, 2022 5

Selinger’s Quantum Programming Language
Quantum Flow Language

input p, q : qbit

measure p

q ∗= X p ∗= X

◦

output p, q : qbit

p, q : qbit

0 1

p, q : qbit p, q : qbit

p, q : qbit p, q : qbit

p, q : qbit

F : HQ
?−→ HQ

F : D22 → D22

1/
√

2 |00〉 + 1/
√

2 |01〉

1/
√

2 |00〉 + 1/
√

2 |10〉

F

1/
√

2 |00〉 + 1/
√

2 |01〉

1/
√

2{|01〉} + 1/
√

2{|00〉}

Formal Methods for Quantum Programs, Theory colloquium, March 23, 2022 5

Selinger’s Quantum Programming Language
Quantum Flow Language

input p, q : qbit

measure p

q ∗= X p ∗= X

◦

output p, q : qbit

p, q : qbit

0 1

p, q : qbit p, q : qbit

p, q : qbit p, q : qbit

p, q : qbit

F : HQ
?−→ HQ

F : D22 → D22 1/
√

2 |00〉 + 1/
√

2 |01〉

1/
√

2 |00〉 + 1/
√

2 |10〉

F

1/
√

2 |00〉 + 1/
√

2 |01〉

1/
√

2{|01〉} + 1/
√

2{|00〉}

Formal Methods for Quantum Programs, Theory colloquium, March 23, 2022 5

Selinger’s Quantum Programming Language
Quantum Flow Language

input p, q : qbit

measure p

q ∗= X p ∗= X

◦

output p, q : qbit

p, q : qbit

0 1

p, q : qbit p, q : qbit

p, q : qbit p, q : qbit

p, q : qbit

F : D22 → D22

1/
√

2 |00〉 + 1/
√

2 |01〉

1/
√

2 |00〉 + 1/
√

2 |10〉

F

1/
√

2 |00〉 + 1/
√

2 |01〉

1/
√

2{|01〉} + 1/
√

2{|00〉}

Formal Methods for Quantum Programs, Theory colloquium, March 23, 2022 5

Selinger’s Quantum Programming Language
Quantum Flow Language

input p, q : qbit

measure p

q ∗= X p ∗= X

◦

output p, q : qbit

p, q : qbit

0 1

p, q : qbit p, q : qbit

p, q : qbit p, q : qbit

p, q : qbit

F : D22 → D22

1/
√

2 |00〉 + 1/
√

2 |01〉

1/
√

2 |00〉 + 1/
√

2 |10〉

F

1/
√

2 |00〉 + 1/
√

2 |01〉

1/
√

2{|01〉} + 1/
√

2{|00〉}

density matrices

Formal Methods for Quantum Programs, Theory colloquium, March 23, 2022 5

Quantum Flows Language (cont’d)

input p, q : qbit

measure p

q ∗= X p ∗= X

◦

output p, q : qbit

p, q : qbit ./

(
A B

C D

)

0 1

p, q : qbit ./

(
A 0

0 0

)
p, q : qbit ./

(
0 0

0 D

)

p, q : qbit ./

(
XAX† 0

0 0

)
p, q : qbit ./

(
D 0

0 0

)

p, q : qbit ./

(
XAX† + D 0

0 0

)

Formal Methods for Quantum Programs, Theory colloquium, March 23, 2022 6

Focus on Unitary Transformation, Merge and Measurement

Unitary Transformation

q ∗= S

q : qbit, Γ ./ A

q : qbit, Γ ./ (S ⊗ I) A (S ⊗ I)†

Merge

◦
Γ ./ A Γ ./ B

Γ ./ A + B

Example (Elementary Gates)

X :=

(
0 1

1 0

)
H :=

1√
2

(
1 1

1 −1

)
T :=

(
1 0

0 ei
π
4

)

Formal Methods for Quantum Programs, Theory colloquium, March 23, 2022 7

Focus on Unitary Transformation, Merge and Measurement

Unitary Transformation

q ∗= S

q : qbit, Γ ./ A

q : qbit, Γ ./ (S ⊗ I) A (S ⊗ I)†

Merge

◦
Γ ./ A Γ ./ B

Γ ./ A + B

Example (Elementary Gates)

X :=

(
0 1

1 0

)
H :=

1√
2

(
1 1

1 −1

)
T :=

(
1 0

0 ei
π
4

)

Formal Methods for Quantum Programs, Theory colloquium, March 23, 2022 7

Focus on Unitary Transformation, Merge and Measurement

Unitary Transformation

q ∗= S

q : qbit, Γ ./ A

q : qbit, Γ ./ (S ⊗ I) A (S ⊗ I)†

Merge

◦
Γ ./ A Γ ./ B

Γ ./ A + B

Example (Elementary Gates)

X :=

(
0 1

1 0

)
H :=

1√
2

(
1 1

1 −1

)
T :=

(
1 0

0 ei
π
4

)

Formal Methods for Quantum Programs, Theory colloquium, March 23, 2022 7

Measurement

measure q

q : qbit, Γ ./

(
A B

C D

)

0 1

q : qbit, Γ ./

(
A 0

0 0

)
q : qbit, Γ ./

(
0 0

0 D

)

• let |ϕ〉 be a pure state, s.t.

|ϕ〉 =

(
v

w

)
|ϕ〉 〈ϕ| =

(
vv† vw†

wv† ww†

)
• measuring the first qubit of |ϕ〉 in the computational basis, yields

‖v‖2 :

(
vv† 0

0 0

)
‖w‖2 :

(
0 0

0 ww†

)

Formal Methods for Quantum Programs, Theory colloquium, March 23, 2022 8

Measurement

measure q

q : qbit, Γ ./

(
A B

C D

)

0 1

q : qbit, Γ ./

(
A 0

0 0

)
q : qbit, Γ ./

(
0 0

0 D

)

• let |ϕ〉 be a pure state, s.t.

|ϕ〉 =

(
v

w

)
|ϕ〉 〈ϕ| =

(
vv† vw†

wv† ww†

)

• measuring the first qubit of |ϕ〉 in the computational basis, yields

‖v‖2 :

(
vv† 0

0 0

)
‖w‖2 :

(
0 0

0 ww†

)

Formal Methods for Quantum Programs, Theory colloquium, March 23, 2022 8

Measurement

measure q

q : qbit, Γ ./

(
A B

C D

)

0 1

q : qbit, Γ ./

(
A 0

0 0

)
q : qbit, Γ ./

(
0 0

0 D

)

• let |ϕ〉 be a pure state, s.t.

|ϕ〉 =

(
v

w

)
|ϕ〉 〈ϕ| =

(
vv† vw†

wv† ww†

)
• measuring the first qubit of |ϕ〉 in the computational basis, yields

‖v‖2 :

(
vv† 0

0 0

)
‖w‖2 :

(
0 0

0 ww†

)
Formal Methods for Quantum Programs, Theory colloquium, March 23, 2022 8

Example (Coin Toss)

new qbit q := |0〉

q ∗= H

measure q

discard q discard q

Γ

./ A

q : qbit, Γ

./

(
A 0

0 0

)

q : qbit, Γ

./ 1
2

(
A A

A A

)

0 1

1
2

(
A 0

0 0

)
./

q : qbit, Γ q : qbit, Γ

./ 1
2

(
0 0

0 A

)

Γ

./ 1
2A

Γ

./ 1
2A

Formal Methods for Quantum Programs, Theory colloquium, March 23, 2022 9

Example (Coin Toss)

new qbit q := |0〉

q ∗= H

measure q

discard q discard q

Γ ./ A

q : qbit, Γ ./

(
A 0

0 0

)

q : qbit, Γ ./ 1
2

(
A A

A A

)

0 1

1
2

(
A 0

0 0

)
./ q : qbit, Γ q : qbit, Γ ./ 1

2

(
0 0

0 A

)

Γ ./ 1
2A Γ ./ 1

2A

Formal Methods for Quantum Programs, Theory colloquium, March 23, 2022 9

Semantical Program Equivalence: Program Optimisation

coin toss

q ∗=

(
1 0

0 −1

)

◦

Γ ./

(
A B

C D

)

0 1

Γ ./ 1
2

(
A B

C D

)

Γ ./ 1
2

(
A −B
−C D

)Γ ./ 1
2

(
A B

C D

)

Γ ./

(
A 0

0 D

)

measure q

◦

Γ ./

(
A B

C D

)

0 1

Γ ./

(
A 0

0 0

)
Γ ./

(
0 0

0 D

)

q : qbit, Γ ./

(
A 0

0 D

)beware
th

e
power of

denota
tio

nal se
m

antic
s

Formal Methods for Quantum Programs, Theory colloquium, March 23, 2022 10

Semantical Program Equivalence

: Program Optimisation

coin toss

q ∗=

(
1 0

0 −1

)

◦

Γ ./

(
A B

C D

)

0 1

Γ ./ 1
2

(
A B

C D

)

Γ ./ 1
2

(
A −B
−C D

)Γ ./ 1
2

(
A B

C D

)

Γ ./

(
A 0

0 D

)

measure q

◦

Γ ./

(
A B

C D

)

0 1

Γ ./

(
A 0

0 0

)
Γ ./

(
0 0

0 D

)

q : qbit, Γ ./

(
A 0

0 D

)beware
th

e
power of

denota
tio

nal se
m

antic
s

Formal Methods for Quantum Programs, Theory colloquium, March 23, 2022 10

Semantical Program Equivalence

: Program Optimisation

coin toss

q ∗=

(
1 0

0 −1

)

◦

Γ ./

(
A B

C D

)

0 1

Γ ./ 1
2

(
A B

C D

)

Γ ./ 1
2

(
A −B
−C D

)Γ ./ 1
2

(
A B

C D

)

Γ ./

(
A 0

0 D

)

measure q

◦

Γ ./

(
A B

C D

)

0 1

Γ ./

(
A 0

0 0

)
Γ ./

(
0 0

0 D

)

q : qbit, Γ ./

(
A 0

0 D

)

beware
th

e
power of

denota
tio

nal se
m

antic
s

Formal Methods for Quantum Programs, Theory colloquium, March 23, 2022 10

Semantical Program Equivalence: Program Optimisation

coin toss

q ∗=

(
1 0

0 −1

)

◦

Γ ./

(
A B

C D

)

0 1

Γ ./ 1
2

(
A B

C D

)

Γ ./ 1
2

(
A −B
−C D

)Γ ./ 1
2

(
A B

C D

)

Γ ./

(
A 0

0 D

)

measure q

◦

Γ ./

(
A B

C D

)

0 1

Γ ./

(
A 0

0 0

)
Γ ./

(
0 0

0 D

)

q : qbit, Γ ./

(
A 0

0 D

)

beware
th

e
power of

denota
tio

nal se
m

antic
s

Formal Methods for Quantum Programs, Theory colloquium, March 23, 2022 10

Semantical Program Equivalence: Program Optimisation

coin toss

q ∗=

(
1 0

0 −1

)

◦

Γ ./

(
A B

C D

)

0 1

Γ ./ 1
2

(
A B

C D

)

Γ ./ 1
2

(
A −B
−C D

)Γ ./ 1
2

(
A B

C D

)

Γ ./

(
A 0

0 D

)

measure q

◦

Γ ./

(
A B

C D

)

0 1

Γ ./

(
A 0

0 0

)
Γ ./

(
0 0

0 D

)

q : qbit, Γ ./

(
A 0

0 D

)beware
th

e
power of

denota
tio

nal se
m

antic
s

Formal Methods for Quantum Programs, Theory colloquium, March 23, 2022 10

The Language QPL

QPL Terms

stm, stm1, stm2 ::= new bit b:=0 | new qbit b:= |0〉 | discard x

| b:=0 | b:=1 | q1, . . . , qn ∗= S

| skip | stm1; stm2 |
| if(b) then stm1 else stm2 | measure q then stm1 else stm2

| while b stm

| proc X : Γ→ Γ′ {stm1} in stm2 | y1, . . . , ym=X(x1, . . . , xn)

Comments

• proc X : Γ→ Γ′ {stm1} in stm2 defines a procedure with body stm1 and scope stm2

• y1, . . . , ym=X(x1, . . . , xn) denotes a procedure call

Formal Methods for Quantum Programs, Theory colloquium, March 23, 2022 11

The Language QPL

QPL Terms

stm, stm1, stm2 ::= new bit b:=0 | new qbit b:= |0〉 | discard x

| b:=0 | b:=1 | q1, . . . , qn ∗= S

| skip | stm1; stm2 |
| if(b) then stm1 else stm2 | measure q then stm1 else stm2

| while b stm

| proc X : Γ→ Γ′ {stm1} in stm2 | y1, . . . , ym=X(x1, . . . , xn)

Comments

• proc X : Γ→ Γ′ {stm1} in stm2 defines a procedure with body stm1 and scope stm2

• y1, . . . , ym=X(x1, . . . , xn) denotes a procedure call

Formal Methods for Quantum Programs, Theory colloquium, March 23, 2022 11

The Language QPL

QPL Terms

stm, stm1, stm2 ::= new bit b:=0 | new qbit b:= |0〉 | discard x

| b:=0 | b:=1 | q1, . . . , qn ∗= S

| skip | stm1; stm2 |
| if(b) then stm1 else stm2 | measure q then stm1 else stm2

| while b stm

| proc X : Γ→ Γ′ {stm1} in stm2 | y1, . . . , ym=X(x1, . . . , xn)

Comments

• proc X : Γ→ Γ′ {stm1} in stm2 defines a procedure with body stm1 and scope stm2

• y1, . . . , ym=X(x1, . . . , xn) denotes a procedure call

Formal Methods for Quantum Programs, Theory colloquium, March 23, 2022 11

Summary on QPL

• each edge in the quantum flow chart has been given an annotation in the form of
a density matrix
• the semantics of a QPL program is now given as a mapping of the input density

matrix to the output density matrix
• in order to show well-definedness these mapping are couched as morphisms of a

category based on superoperators
• this yields a compositional denotational semantics

Comparison

Allocation Subroutines Oracles Data Types Specification Resources

QPL X X (X) X (X) ×

Quipper X X X X (X) ×
Q# X X X X × ×

Formal Methods for Quantum Programs, Theory colloquium, March 23, 2022 12

Summary on QPL

• each edge in the quantum flow chart has been given an annotation in the form of
a density matrix
• the semantics of a QPL program is now given as a mapping of the input density

matrix to the output density matrix
• in order to show well-definedness these mapping are couched as morphisms of a

category based on superoperators
• this yields a compositional denotational semantics

Comparison

Allocation Subroutines Oracles Data Types Specification Resources

QPL X X (X) X (X) ×

Quipper X X X X (X) ×
Q# X X X X × ×

Formal Methods for Quantum Programs, Theory colloquium, March 23, 2022 12

Summary on QPL

• each edge in the quantum flow chart has been given an annotation in the form of
a density matrix
• the semantics of a QPL program is now given as a mapping of the input density

matrix to the output density matrix
• in order to show well-definedness these mapping are couched as morphisms of a

category based on superoperators
• this yields a compositional denotational semantics

Comparison

Allocation Subroutines Oracles Data Types Specification Resources

QPL X X (X) X (X) ×
Quipper X X X X (X) ×

Q# X X X X × ×

Formal Methods for Quantum Programs, Theory colloquium, March 23, 2022 12

Summary on QPL

• each edge in the quantum flow chart has been given an annotation in the form of
a density matrix
• the semantics of a QPL program is now given as a mapping of the input density

matrix to the output density matrix
• in order to show well-definedness these mapping are couched as morphisms of a

category based on superoperators
• this yields a compositional denotational semantics

Comparison

Allocation Subroutines Oracles Data Types Specification Resources

QPL X X (X) X (X) ×
Quipper X X X X (X) ×
Q# X X X X × ×

Formal Methods for Quantum Programs, Theory colloquium, March 23, 2022 12

Program and Resource Analysis

Static Program Analysis

Definition (due to Z. Manna and A. Pnueli)

“The algorithmic discovery of properties of a program by inspection of the source
text.”

Push-Button Automation

complexity bound 3/2 log2(|t|)

unknown1

ST.splay

1

The problem is (highly) undecidable, to be precise it is Σ0
2-complete.

Formal Methods for Quantum Programs, Theory colloquium, March 23, 2022 13

Static Program Analysis

Definition (due to Z. Manna and A. Pnueli)

“The algorithmic discovery of properties of a program by inspection of the source
text.”

Push-Button Automation

complexity bound 3/2 log2(|t|)

unknown1

ST.splay

1

The problem is (highly) undecidable, to be precise it is Σ0
2-complete.

Formal Methods for Quantum Programs, Theory colloquium, March 23, 2022 13

Static Program Analysis

Definition (due to Z. Manna and A. Pnueli)

“The algorithmic discovery of properties of a program by inspection of the source
text.”

Push-Button Automation

complexity bound 3/2 log2(|t|)

unknown1

ST.splay

1The problem is (highly) undecidable, to be precise it is Σ0
2-complete.

Formal Methods for Quantum Programs, Theory colloquium, March 23, 2022 13

Zune Bug: December 31, 2008

year = ORIGINYEAR; /* = 1980 */

while (days > 365) {

if (IsLeapYear(year)) {

if (days > 366) {

days -= 366;

year += 1; } }

else {

days -= 365;

year += 1; }

}

D. Distefano, M. Fähndrich, F. Logozzo, and P. O’Hearn.
Scaling Static Analyses at Facebook. Commun. ACM, 62(8):62–70, 2019.

SOLV
ED!

Formal Methods for Quantum Programs, Theory colloquium, March 23, 2022 14

Zune Bug: December 31, 2008

year = ORIGINYEAR; /* = 1980 */

while (days > 365) {

if (IsLeapYear(year)) {

if (days > 366) {

days -= 366;

year += 1; } }

else {

days -= 365;

year += 1; }

}

D. Distefano, M. Fähndrich, F. Logozzo, and P. O’Hearn.
Scaling Static Analyses at Facebook. Commun. ACM, 62(8):62–70, 2019.

SOLV
ED!

Formal Methods for Quantum Programs, Theory colloquium, March 23, 2022 14

Zune Bug: December 31, 2008

year = ORIGINYEAR; /* = 1980 */

while (days > 365) {

if (IsLeapYear(year)) {

if (days > 366) {

days -= 366;

year += 1; } }

else {

days -= 365;

year += 1; }

}

D. Distefano, M. Fähndrich, F. Logozzo, and P. O’Hearn.
Scaling Static Analyses at Facebook. Commun. ACM, 62(8):62–70, 2019.

SOLV
ED!

Formal Methods for Quantum Programs, Theory colloquium, March 23, 2022 14

Zune Bug: December 31, 2008

year = ORIGINYEAR; /* = 1980 */

while (days > 365) {

if (IsLeapYear(year)) {

if (days > 366) {

days -= 366;

year += 1; } }

else {

days -= 365;

year += 1; }

}

D. Distefano, M. Fähndrich, F. Logozzo, and P. O’Hearn.
Scaling Static Analyses at Facebook. Commun. ACM, 62(8):62–70, 2019.

SOLV
ED!

Formal Methods for Quantum Programs, Theory colloquium, March 23, 2022 14

Quantum Bugs

• empirical study of bugs in a broad range of quantum computing platforms (eg.
IBM’s Qiskit, Google’s Circ, Mircosoft’s Q#)

• research methodology: search for commit message like “fix” together with
evidence of a commit that patched the problem

• 223 bugs found, among them (almost) 40% quantum-specific

• bugs occur everywhere, quantum-specific ones parts that represent, compile or
optimise quantum code

• classical bugs occur in seemingly easy adminstrative code, like infrastructural
scripts

• study proposes a hierarchy of bug patterns: ten quantum-specific patterns

M. Paltenghi and M. Pradel.
Bugs in quantum computing platforms: An empirical study. CoRR, abs/2110.14560, 2022.

Formal Methods for Quantum Programs, Theory colloquium, March 23, 2022 15

Quantum Bugs

• empirical study of bugs in a broad range of quantum computing platforms (eg.
IBM’s Qiskit, Google’s Circ, Mircosoft’s Q#)

• research methodology: search for commit message like “fix” together with
evidence of a commit that patched the problem

• 223 bugs found, among them (almost) 40% quantum-specific

• bugs occur everywhere, quantum-specific ones parts that represent, compile or
optimise quantum code

• classical bugs occur in seemingly easy adminstrative code, like infrastructural
scripts

• study proposes a hierarchy of bug patterns: ten quantum-specific patterns

M. Paltenghi and M. Pradel.
Bugs in quantum computing platforms: An empirical study. CoRR, abs/2110.14560, 2022.

Formal Methods for Quantum Programs, Theory colloquium, March 23, 2022 15

Quantum Bugs

• empirical study of bugs in a broad range of quantum computing platforms (eg.
IBM’s Qiskit, Google’s Circ, Mircosoft’s Q#)

• research methodology: search for commit message like “fix” together with
evidence of a commit that patched the problem

• 223 bugs found, among them (almost) 40% quantum-specific

• bugs occur everywhere, quantum-specific ones parts that represent, compile or
optimise quantum code

• classical bugs occur in seemingly easy adminstrative code, like infrastructural
scripts

• study proposes a hierarchy of bug patterns: ten quantum-specific patterns

M. Paltenghi and M. Pradel.
Bugs in quantum computing platforms: An empirical study. CoRR, abs/2110.14560, 2022.

Formal Methods for Quantum Programs, Theory colloquium, March 23, 2022 15

Quantum-Specific Patterns

Incorrect Numerical Calculation

return pauli_string_phasor . PauliStringPhasor (
PauliString (qubit_pauli_map=sel f . _qubit_pauli_map) ,

exponent_neg=+half_turns / 4,
exponent_pos=−half_turns / 4)

Comments
• functional bugs clearly dominate non-functional bugs (like inefficient code)
• most likely bug symptoms are crashes or incorrect outputs; the latter are typically

quantum-specific

• testing doesn’t help
• compile-time guarantees through better type systems or specification languages

would

not at all
so

lved

fo
rm

al m
eth

ods re
quire

d

Formal Methods for Quantum Programs, Theory colloquium, March 23, 2022 16

Quantum-Specific Patterns

Incorrect Numerical Calculation

return pauli_string_phasor . PauliStringPhasor (
PauliString (qubit_pauli_map=sel f . _qubit_pauli_map) ,

exponent_neg=+half_turns / 2,
exponent_pos=−half_turns / 2)

Comments
• functional bugs clearly dominate non-functional bugs (like inefficient code)
• most likely bug symptoms are crashes or incorrect outputs; the latter are typically

quantum-specific

• testing doesn’t help
• compile-time guarantees through better type systems or specification languages

would

not at all
so

lved

fo
rm

al m
eth

ods re
quire

d

Formal Methods for Quantum Programs, Theory colloquium, March 23, 2022 16

Quantum-Specific Patterns

Incorrect Numerical Calculation

return pauli_string_phasor . PauliStringPhasor (
PauliString (qubit_pauli_map=sel f . _qubit_pauli_map) ,

exponent_neg=+half_turns / 2,
exponent_pos=−half_turns / 2)

Comments
• functional bugs clearly dominate non-functional bugs (like inefficient code)
• most likely bug symptoms are crashes or incorrect outputs; the latter are typically

quantum-specific

• testing doesn’t help
• compile-time guarantees through better type systems or specification languages

would

not at all
so

lved

fo
rm

al m
eth

ods re
quire

d

Formal Methods for Quantum Programs, Theory colloquium, March 23, 2022 16

Quantum-Specific Patterns

Incorrect Numerical Calculation

return pauli_string_phasor . PauliStringPhasor (
PauliString (qubit_pauli_map=sel f . _qubit_pauli_map) ,

exponent_neg=+half_turns / 2,
exponent_pos=−half_turns / 2)

Comments
• functional bugs clearly dominate non-functional bugs (like inefficient code)
• most likely bug symptoms are crashes or incorrect outputs; the latter are typically

quantum-specific
• testing doesn’t help
• compile-time guarantees through better type systems or specification languages

would

not at all
so

lved

fo
rm

al m
eth

ods re
quire

d

Formal Methods for Quantum Programs, Theory colloquium, March 23, 2022 16

Quantum-Specific Patterns

Incorrect Numerical Calculation

return pauli_string_phasor . PauliStringPhasor (
PauliString (qubit_pauli_map=sel f . _qubit_pauli_map) ,

exponent_neg=+half_turns / 2,
exponent_pos=−half_turns / 2)

Comments
• functional bugs clearly dominate non-functional bugs (like inefficient code)
• most likely bug symptoms are crashes or incorrect outputs; the latter are typically

quantum-specific
• testing doesn’t help
• compile-time guarantees through better type systems or specification languages

would

not at all
so

lved

fo
rm

al m
eth

ods re
quire

d

Formal Methods for Quantum Programs, Theory colloquium, March 23, 2022 16

Expected Cost Analysis for Quantum Programs

Resource Analysis of Quantum Programs

resources could be
• the expected runtime
• the expected number of quantum gates
• the amount of quantum resources (in an application-specific sense) required by

quantum programs,

Our Results

1 formal method for an expected cost analysis providing a framework for future
(partial) automation

2 computing the expected cost of several well-known quantum algorithms and
protocols, such as
• coin tossing
• repeat until success
• entangled state preparation
• quantum walk

Formal Methods for Quantum Programs, Theory colloquium, March 23, 2022 17

Resource Analysis of Quantum Programs

resources could be
• the expected runtime
• the expected number of quantum gates
• the amount of quantum resources (in an application-specific sense) required by

quantum programs,

Our Results

1 formal method for an expected cost analysis providing a framework for future
(partial) automation

2 computing the expected cost of several well-known quantum algorithms and
protocols, such as
• coin tossing
• repeat until success
• entangled state preparation
• quantum walk

Formal Methods for Quantum Programs, Theory colloquium, March 23, 2022 17

Resource Analysis of Quantum Programs

resources could be
• the expected runtime
• the expected number of quantum gates
• the amount of quantum resources (in an application-specific sense) required by

quantum programs,

Our Results

1 formal method for an expected cost analysis providing a framework for future
(partial) automation

2 computing the expected cost of several well-known quantum algorithms and
protocols, such as
• coin tossing
• repeat until success
• entangled state preparation
• quantum walk

Formal Methods for Quantum Programs, Theory colloquium, March 23, 2022 17

Resource Analysis of Quantum Programs

resources could be
• the expected runtime
• the expected number of quantum gates
• the amount of quantum resources (in an application-specific sense) required by

quantum programs,

Our Results

1 formal method for an expected cost analysis providing a framework for future
(partial) automation

2 computing the expected cost of several well-known quantum algorithms and
protocols, such as
• coin tossing
• repeat until success
• entangled state preparation
• quantum walk

Formal Methods for Quantum Programs, Theory colloquium, March 23, 2022 17

Coin Tossing: Syntax by Example

stm, stm1, stm2 ::= skip | xK = eK | q ∗= U | xB = meas(q) | consume(a)

| stm1; stm2 | if (b) {stm1} else {stm2} | while(b) {stm}

• a state σ is a pair (s, |ϕ〉) consisting of a store s and a quantum state |ϕ〉
• a configuration µ is pair (stm, σ)

CT(q) , x = true;
while(x){

q ∗= H;
x = meas(q);
consume(1)
}

stm0

• iterated coin toss, probability
of termination after n steps
depends on initial state |ϕ〉 of
qubit q

• loop body stm0 consumes 1
resource

• overall probability of
termination = 1

Formal Methods for Quantum Programs, Theory colloquium, March 23, 2022 18

Coin Tossing: Syntax by Example

stm, stm1, stm2 ::= skip | xK = eK | q ∗= U | xB = meas(q) | consume(a)

| stm1; stm2 | if (b) {stm1} else {stm2} | while(b) {stm}

• a state σ is a pair (s, |ϕ〉) consisting of a store s and a quantum state |ϕ〉
• a configuration µ is pair (stm, σ)

CT(q) , x = true;
while(x){

q ∗= H;
x = meas(q);
consume(1)
}

stm0

• iterated coin toss, probability
of termination after n steps
depends on initial state |ϕ〉 of
qubit q

• loop body stm0 consumes 1
resource

• overall probability of
termination = 1

Formal Methods for Quantum Programs, Theory colloquium, March 23, 2022 18

Coin Tossing: Expected Cost Analysis

Manual Analysis

• let (s, |ϕ〉) be a state, s.t.
• s(x) = true
• |ϕ〉 = α |0〉+ β |1〉

ecostCT(q)(s,

(
α

β

)
) = sup

n∈N

{
1 + p1

∑n
i=0

1
2i

}
= 1 + |α− β|2

• eg. ecostCT(q)(s, |0〉) = 2

requires

• formal operational semantics (roughly [stm] : State→ D(State))

• semantics accounts for resource consumption

• but tedious, error-prone calculations!

Formal Methods for Quantum Programs, Theory colloquium, March 23, 2022 19

Coin Tossing: Expected Cost Analysis

Manual Analysis

• let (s, |ϕ〉) be a state, s.t.
• s(x) = true
• |ϕ〉 = α |0〉+ β |1〉

ecostCT(q)(s,

(
α

β

)
) = sup

n∈N

{
1 + p1

∑n
i=0

1
2i

}
= 1 + |α− β|2

• eg. ecostCT(q)(s, |0〉) = 2

requires

• formal operational semantics (roughly [stm] : State→ D(State))

• semantics accounts for resource consumption

• but tedious, error-prone calculations!

Formal Methods for Quantum Programs, Theory colloquium, March 23, 2022 19

Coin Tossing: Expected Cost Analysis

Manual Analysis

• let (s, |ϕ〉) be a state, s.t.
• s(x) = true
• |ϕ〉 = α |0〉+ β |1〉

ecostCT(q)(s,

(
α

β

)
) = sup

n∈N

{
1 + p1

∑n
i=0

1
2i

}
= 1 + |α− β|2

• eg. ecostCT(q)(s, |0〉) = 2

requires

• formal operational semantics (roughly [stm] : State→ D(State))

• semantics accounts for resource consumption

• but tedious, error-prone calculations!

Formal Methods for Quantum Programs, Theory colloquium, March 23, 2022 19

Quantum Expected Cost Transformer
(generalisation of Hoare-style formal verification)

qect
[
·
]{
·
}

: Program→ (State→ R+∞)→ (State→ R+∞)

Theorem

The following identity hold, for all stm ∈ Statement and σ ∈ State

qect
[
stm

]{
0
}

(σ) = ecoststm(σ)

Formal Methods for Quantum Programs, Theory colloquium, March 23, 2022 20

Quantum Expected Cost Transformer
(generalisation of Hoare-style formal verification)

qect
[
·
]{
·
}

: Program→ (State→ R+∞)→ (State→ R+∞)

resources (expected costs)
available after execution

Theorem

The following identity hold, for all stm ∈ Statement and σ ∈ State

qect
[
stm

]{
0
}

(σ) = ecoststm(σ)

Formal Methods for Quantum Programs, Theory colloquium, March 23, 2022 20

Quantum Expected Cost Transformer
(generalisation of Hoare-style formal verification)

qect
[
·
]{
·
}

: Program→ (State→ R+∞)→ (State→ R+∞)

resources (expected costs)
available after execution

resources required
before execution

Theorem

The following identity hold, for all stm ∈ Statement and σ ∈ State

qect
[
stm

]{
0
}

(σ) = ecoststm(σ)

Formal Methods for Quantum Programs, Theory colloquium, March 23, 2022 20

Quantum Expected Cost Transformer
(generalisation of Hoare-style formal verification)

qect
[
·
]{
·
}

: Program→ (State→ R+∞)→ (State→ R+∞)

resources (expected costs)
available after execution

resources required
before execution

Theorem

The following identity hold, for all stm ∈ Statement and σ ∈ State

qect
[
stm

]{
0
}

(σ) = ecoststm(σ)

Formal Methods for Quantum Programs, Theory colloquium, March 23, 2022 20

Illustrating Examples

expected cost 2

unknown1

coin tossing

not (y
et)

auto
m

ate
d

stm cost metric expect cost

coin tossing # of loops 2

repeat-until-success # of T gates 8
3

entangled state preparation # of attempts for k qubits 148 · (k + 4)

quantum walk on n-circle # of loops 2 if started at position |1〉
1 if started at position |0〉

Formal Methods for Quantum Programs, Theory colloquium, March 23, 2022 21

Illustrating Examples

expected cost 2

unknown1

coin tossing

not (y
et)

auto
m

ate
d

stm cost metric expect cost

coin tossing # of loops 2

repeat-until-success # of T gates 8
3

entangled state preparation # of attempts for k qubits 148 · (k + 4)

quantum walk on n-circle # of loops 2 if started at position |1〉
1 if started at position |0〉

Formal Methods for Quantum Programs, Theory colloquium, March 23, 2022 21

Illustrating Examples
CT(q) , x = true;

while(x){
q ∗= H;
x = meas(q);
consume(1)
}

stm0

• iterated coin toss

• loop body stm0 consumes 1
resource

• overall probability of
termination = 1

stm cost metric expect cost

coin tossing # of loops 2

repeat-until-success # of T gates 8
3

entangled state preparation # of attempts for k qubits 148 · (k + 4)

quantum walk on n-circle # of loops 2 if started at position |1〉
1 if started at position |0〉

Formal Methods for Quantum Programs, Theory colloquium, March 23, 2022 21

Illustrating Examples

|0〉

|ϕ〉

H T H T H (
I+i
√

2X√
3

)1−b
|ϕ〉

bmeas

stm cost metric expect cost

coin tossing # of loops 2

repeat-until-success # of T gates 8
3

entangled state preparation # of attempts for k qubits 148 · (k + 4)

quantum walk on n-circle # of loops 2 if started at position |1〉
1 if started at position |0〉

Formal Methods for Quantum Programs, Theory colloquium, March 23, 2022 21

Illustrating Examples
CHAIN(k, q0, . . . , qk+3) ,
. . .
while(0 ≤ t ∧ t < k){
CHAIN4(qt+1, qt+2, qt+3, qt+4);
FUSE(qt, qt+1, x);
if(x){t = t + 4} else {t = t− 1};
if(t = −1){t = 0; q0 = |+〉} else {skip}

}

• prepare a graph state
represented by a path on k
qubits

• implemented with nested
while loops

stm cost metric expect cost

coin tossing # of loops 2

repeat-until-success # of T gates 8
3

entangled state preparation # of attempts for k qubits 148 · (k + 4)

quantum walk on n-circle # of loops 2 if started at position |1〉
1 if started at position |0〉

Formal Methods for Quantum Programs, Theory colloquium, March 23, 2022 21

Illustrating Examples

xB = true;
while(x){
x = meas(p);
q ∗= H;
q, p ∗= S;
consume(1)

}

• Hadamard quantum walk on
an n-circle (Liu et al., 2019)

• cost analysis depends on
quantum state

• loop body stm0 consumes 1
resource

stm cost metric expect cost

coin tossing # of loops 2

repeat-until-success # of T gates 8
3

entangled state preparation # of attempts for k qubits 148 · (k + 4)

quantum walk on n-circle # of loops 2 if started at position |1〉
1 if started at position |0〉

Formal Methods for Quantum Programs, Theory colloquium, March 23, 2022 21

Illustrating Examples
xB = true;
while(x){
x = meas(p);
q ∗= H;
q, p ∗= S;
consume(1)

}

Σn−1
i=0 |L〉 〈L| ⊗ |i	 1〉 〈i|+ Σn−1

i=0 |R〉 〈R| ⊗ |i⊕ 1〉 〈i| • Hadamard quantum walk on
an n-circle (Liu et al., 2019)

• cost analysis depends on
quantum state

• loop body stm0 consumes 1
resource

stm cost metric expect cost

coin tossing # of loops 2

repeat-until-success # of T gates 8
3

entangled state preparation # of attempts for k qubits 148 · (k + 4)

quantum walk on n-circle # of loops 2 if started at position |1〉
1 if started at position |0〉

Formal Methods for Quantum Programs, Theory colloquium, March 23, 2022 21

Summary on Resource Analysis of Quantum Programs

• denotational semantics as a variant of the quantum expected cost transformer,
employing density matrices

qevK

[
·
]{
·
}

: Program→ (State→ K)→ (State→ K)

• (partial) automation subject of future work

Comparison

Allocation Subroutines Oracles Data Types Specification Resources

qWhile X × × (X) (X) X

M. Avanzini, G. Moser, R. Péchoux, S. Perdrix, and V. Zamdzhiev.
Quantum expectation transformers for cost analysis. CoRR, abs/2201.09361, 2022.

Formal Methods for Quantum Programs, Theory colloquium, March 23, 2022 22

Summary on Resource Analysis of Quantum Programs

• denotational semantics as a variant of the quantum expected cost transformer,
employing density matrices

qevK

[
·
]{
·
}

: Program→ (State→ K)→ (State→ K)

• (partial) automation subject of future work

Comparison

Allocation Subroutines Oracles Data Types Specification Resources

qWhile X × × (X) (X) X

M. Avanzini, G. Moser, R. Péchoux, S. Perdrix, and V. Zamdzhiev.
Quantum expectation transformers for cost analysis. CoRR, abs/2201.09361, 2022.

Formal Methods for Quantum Programs, Theory colloquium, March 23, 2022 22

Summary on Resource Analysis of Quantum Programs

• denotational semantics as a variant of the quantum expected cost transformer,
employing density matrices

qevK

[
·
]{
·
}

: Program→ (State→ K)→ (State→ K)

{0,1}n × Zm → D2k

• (partial) automation subject of future work

Comparison

Allocation Subroutines Oracles Data Types Specification Resources

qWhile X × × (X) (X) X

M. Avanzini, G. Moser, R. Péchoux, S. Perdrix, and V. Zamdzhiev.
Quantum expectation transformers for cost analysis. CoRR, abs/2201.09361, 2022.

Formal Methods for Quantum Programs, Theory colloquium, March 23, 2022 22

Summary on Resource Analysis of Quantum Programs

• denotational semantics as a variant of the quantum expected cost transformer,
employing density matrices

qevK

[
·
]{
·
}

: Program→ (State→ K)→ (State→ K)

{0,1}n × Zm → D2k

• (partial) automation subject of future work

Comparison

Allocation Subroutines Oracles Data Types Specification Resources

qWhile X × × (X) (X) X

M. Avanzini, G. Moser, R. Péchoux, S. Perdrix, and V. Zamdzhiev.
Quantum expectation transformers for cost analysis. CoRR, abs/2201.09361, 2022.

Formal Methods for Quantum Programs, Theory colloquium, March 23, 2022 22

Summary on Resource Analysis of Quantum Programs

• denotational semantics as a variant of the quantum expected cost transformer,
employing density matrices

qevK

[
·
]{
·
}

: Program→ (State→ K)→ (State→ K)

{0,1}n × Zm → D2k

• (partial) automation subject of future work

Comparison

Allocation Subroutines Oracles Data Types Specification Resources

qWhile X × × (X) (X) X

M. Avanzini, G. Moser, R. Péchoux, S. Perdrix, and V. Zamdzhiev.
Quantum expectation transformers for cost analysis. CoRR, abs/2201.09361, 2022.

Formal Methods for Quantum Programs, Theory colloquium, March 23, 2022 22

Thank You For Your Attention!

Formal Methods for Quantum Programs, Theory colloquium, March 23, 2022 23

Quantum Expectation Transformer

stm qet
[
stm

]{
f
}

ε f

skip f

x = e f [x := e]

q ∗= U f [Uq]

x = meas(q) pq0f [x := 0; M
q
0] + (1− pq0)f [x := 1; M

q
1]

consume(a) max(JaK ,0) + f

stm1; stm2 qet
[
stm1

]{
qet

[
stm2

]{
f
}}

if(b){stm1} else {stm2} qet
[
stm1

]{
f
}

+JbK qet
[
stm2

]{
f
}

while(b){stm} lfp
(
λF.qet

[
stm

]{
F
}

+JbK f
)

Formal Methods for Quantum Programs, Theory colloquium, March 23, 2022 24

Coin Tossing: Formal Expected Cost Analysis

• we need to find an expectation g satisfying the following inequalities

J¬xK · 0 6 g

JxK · qect
[
stm0

]{
g
}
6 g

• we set

g(s,

(
α

β

)
) = JxK · (1 + |α− β|2).

• expectation q satisfies the above inequality and we obtain

qect
[
CT(q)

]{
0
}
6 qect

[
xB = true

]{
g
}

= g[x := 1] = λ(s,

(
α

β

)
).1 + |α− β|2

Formal Methods for Quantum Programs, Theory colloquium, March 23, 2022 25

QPL: Classic Part
input b, c : bit

branch b

b:=c

c:=0

◦

output b, c : bit

b, c : bit

./ (p00,p01,p10,p11)

1

b, c : bit

./ (0,0,p10,p11)

b, c : bit

./ (p10,0,0,p11)

b, c : bit

./ (p10,0,p11)

(p00,p10,0,0) ./

b, c : bit

b, c : bit

./ (p00 + p10,p01,p11,0)

0

F : D(B2)→ D(B2) (p00,p01,p10,p11)

F

(p00 + p10,p01,p11,0)

Formal Methods for Quantum Programs, Theory colloquium, March 23, 2022 26

QPL: Classic Part
input b, c : bit

branch b

b:=c

c:=0

◦

output b, c : bit

b, c : bit

./ (p00,p01,p10,p11)

1

b, c : bit

./ (0,0,p10,p11)

b, c : bit

./ (p10,0,0,p11)

b, c : bit

./ (p10,0,p11)

(p00,p10,0,0) ./

b, c : bit

b, c : bit

./ (p00 + p10,p01,p11,0)

0

F : D(B2)→ D(B2) (p00,p01,p10,p11)

F

Formal Methods for Quantum Programs, Theory colloquium, March 23, 2022 26

QPL: Classic Part
input b, c : bit

branch b

b:=c

c:=0

◦

output b, c : bit

b, c : bit

./ (p00,p01,p10,p11)

1

b, c : bit

./ (0,0,p10,p11)

b, c : bit

./ (p10,0,0,p11)

b, c : bit

./ (p10,0,p11)

(p00,p10,0,0) ./

b, c : bit

b, c : bit

./ (p00 + p10,p01,p11,0)

0

F : D(B2)→ D(B2) (p00,p01,p10,p11)

F

Formal Methods for Quantum Programs, Theory colloquium, March 23, 2022 26

QPL: Classic Part
input b, c : bit

branch b

b:=c

c:=0

◦

output b, c : bit

b, c : bit ./ (p00,p01,p10,p11)

1

b, c : bit ./ (0,0,p10,p11)

b, c : bit ./ (p10,0,0,p11)

b, c : bit ./ (p10,0,p11)

(p00,p10,0,0) ./ b, c : bit

b, c : bit ./ (p00 + p10,p01,p11,0)

0

F : D(B2)→ D(B2) (p00,p01,p10,p11)

F

(p00 + p10,p01,p11,0)

Formal Methods for Quantum Programs, Theory colloquium, March 23, 2022 26

Classical Flow Charts

Branching

branch b

b, c : bit ./ (p00,p01,p10,p11)

0 1

b, c : bit ./ (p00,p01,0,0) b, c : bit ./ (0,0,p10,p11)

• a state of a program is a pair (e, σ)
• e is an edge (conceivable as program location)
• σ : V → B is a store

• observe that program locations and stores are interchangable:
• program locations (aka program counters) are often just variables
• different stores are representable by different control paths

Formal Methods for Quantum Programs, Theory colloquium, March 23, 2022 27

Classical Flow Charts

Merge

◦
b, c : bit ./ (p00,p01,p10,p11) b, c : bit ./ (p′00,p

′
01,p

′
10,p

′
11)B

b, c : ./ (p00 + p′00,p01 + p′01,p10 + p′10,p11 + p′11)

• a state of a program is a pair (e, σ)
• e is an edge (conceivable as program location)
• σ : V → B is a store

• observe that program locations and stores are interchangable:
• program locations (aka program counters) are often just variables
• different stores are representable by different control paths

Formal Methods for Quantum Programs, Theory colloquium, March 23, 2022 27

Classical Flow Charts

Branching

branch b

b, c : bit ./ (p00,p01,p10,p11)

0 1

b, c : bit ./ (p00,p01,0,0) b, c : bit ./ (0,0,p10,p11)

• a state of a program is a pair (e, σ)
• e is an edge (conceivable as program location)
• σ : V → B is a store

• observe that program locations and stores are interchangable:
• program locations (aka program counters) are often just variables
• different stores are representable by different control paths

Formal Methods for Quantum Programs, Theory colloquium, March 23, 2022 27

Classical Flow Charts

Branching

branch b

b, c : bit ./ (p00,p01,p10,p11)

0 1

b, c : bit ./ (p00,p01,0,0) b, c : bit ./ (0,0,p10,p11)

• a state of a program is a pair (e, σ)
• e is an edge (conceivable as program location)
• σ : V → B is a store

• observe that program locations and stores are interchangable:
• program locations (aka program counters) are often just variables
• different stores are representable by different control paths

Formal Methods for Quantum Programs, Theory colloquium, March 23, 2022 27

Classical Flow Charts

Branching

branch b

b, c : bit ./ (p00,p01,p10,p11)

0 1

b, c : bit ./ (p00,p01,0,0) b, c : bit ./ (0,0,p10,p11)

• a state of a program is a pair (e, σ)
• e is an edge (conceivable as program location)
• σ : V → B is a store

• observe that program locations and stores are interchangable:
• program locations (aka program counters) are often just variables
• different stores are representable by different control paths

Formal Methods for Quantum Programs, Theory colloquium, March 23, 2022 27

Density Matrices & Löwner partial order

Definition

a density matrix is a positive Hermitian matrix A s.t. tr(A) = 1; a subdensity matrix is
a positive Hermitian matrix A s.t. tr(A) 6 1

Example

consider quantum state |ϕ〉 = 1√
2
|0〉 − 1√

2
|1〉, which is representable by the density

matrix |ϕ〉 〈ϕ|:

|ϕ〉 〈ϕ| =

(
1/2 −1/2

−1/2 1/2

)

Formal Methods for Quantum Programs, Theory colloquium, March 23, 2022 28

let Dn denote the set of subdensity matrices of dimension n

Definition

for matrices A,B ∈ Dn, define A @ B, if B− A is positive

Proposition

the partial order set (Dn,w) is a CPO, that is, every increasing sequence admits least
upper bounds

Formal Methods for Quantum Programs, Theory colloquium, March 23, 2022 29

	Quantum Programming Languages
	Program and Resource Analysis
	Expected Cost Analysis for Quantum Programs
	Thank You For Your Attention
	Appendix

