

Formal Methods for Quantum Programs

Martin Avanzini **Georg Moser** Romain Péchoux Simon Perdrix Vladimir Zamdzhiev

https://tcs-informatik.uibk.ac.at

universitat

R. V. Meter and C. Horsman. A blueprint for building a quantum computer. *Commun. ACM*, 56(10):84–93, 2013.

Formal Methods for Quantum Programs, Theory colloquium, March 23, 2022

H. Briegel, D. Browne, W. Dür, R. Raussendorf, and M. V. den Nest. Measurement-based quantum computation. *Nature Physics*, 5:19–26, 2009.

P. Schindler, J. Barreiro, T. Monz, V. Nebendahl, D. Nigg, M. Chwalla, M. Hennrich, and R. Blatt. Experimental repetitive quantum error correction. *Science*, 332(6033), 2011.

universität Innsbruck Formal Methods for Quantum Programs, Theory colloquium, March 23, 2022

innsbruck

V. Dunjko and H. Briegel. Machine learning & artificial intelligence in the quantum domain. *arXiv*, (1709.02779), 2017.

universität Formal Methods for Quantum Programs. Theory colloquium, March 23, 2022

H. Miyahara, K. Aihara, and W. Lechner. Quantum expectation-maximization algorithm. *Physical Review A*, 101(1), 2020.

universität Innsbruck Formal Methods for Quantum Programs, Theory colloquium, March 23, 2022

V. Torggler, P. Aumann, H. Ritsch, and W. Lechner. A quantum n-queens solver. *Quantum*, 3(149), 2019.

universität Innsbruck Formal Methods for Quantum Programs, Theory colloquium, March 23, 2022

P. Selinger.

universität

innsbruck

Towards a quantum programming language. *Math. Struct. Comput. Sci.*, 14(4):527–586, 2004.

Formal Methods for Quantum Programs, Theory colloquium, March 23, 2022

Motivation to Study Quantum Computation Viewpoint of Computer Science

quantum effects allows us to break the "strong" form of the Church-Turing thesis—any reasonable model of computation is efficiently computable by a Turing machine

Motivation to Study Quantum Computation Viewpoint of Computer Science

- quantum effects allows us to break the "strong" form of the Church-Turing thesis—any reasonable model of computation is efficiently computable by a Turing machine
- theoretical computer science is about the study of computation, regardless of the physical device implementing this computation

Motivation to Study Quantum Computation

Viewpoint of Computer Science

- quantum effects allows us to break the "strong" form of the Church-Turing thesis—any reasonable model of computation is efficiently computable by a Turing machine
- theoretical computer science is about the study of computation, regardless of the physical device implementing this computation
- since our understanding of the world is quantum mechanical, TCS has to study quantum computers, not classical ones

Motivation to Study Quantum Computation

Viewpoint of Computer Science

- quantum effects allows us to break the "strong" form of the Church-Turing thesis—any reasonable model of computation is efficiently computable by a Turing machine
- theoretical computer science is about the study of computation, regardless of the physical device implementing this computation
- since our understanding of the world is quantum mechanical, TCS has to study quantum computers, not classical ones
- more practically, much of cryptography becomes insecure in a quantum world, while entanglement makes it possible to design unconditionally secure key distribution: post-quantum cryptography

Motivation to Study Quantum Computation

Viewpoint of Computer Science

- quantum effects allows us to break the "strong" form of the Church-Turing thesis—any reasonable model of computation is efficiently computable by a Turing machine
- theoretical computer science is about the study of computation, regardless of the physical device implementing this computation
- since our understanding of the world is quantum mechanical, TCS has to study quantum computers, not classical ones
- more practically, much of cryptography becomes insecure in a quantum world, while entanglement makes it possible to design unconditionally secure key distribution: post-quantum cryptography
- similarly, as quantum computers become the new normal, a theory of quantum programming languages is crucially needed

• Quantum Programming Languages

• Program and Resource Analysis

• Expected Cost Analysis for Quantum Programs

Quantum Programming Languages

Formal Methods for Quantum Programs, Theory colloquium, March 23, 2022

Requirements for Quantum Programming Languages

Allocation and Measurement

- allocate and measure quantum registers
- apply unitary operations

Requirements for Quantum Programming Languages

Allocation and Measurement

- allocate and measure quantum registers
- apply unitary operations

Reasoning about Subroutines

- defining and calling subroutines
- reversing subroutines

Requirements for Quantum Programming Languages

Allocation and Measurement

- allocate and measure quantum registers
- apply unitary operations

Reasoning about Subroutines

- defining and calling subroutines
- reversing subroutines

Building Quantum Oracles

build quantum oracles from classical functions

Quantum Data Types

- data types allow to reason abstractly
- (quantum) data types allow for static type checking thus providing compile-time guarantees

Quantum Data Types

- data types allow to reason abstractly
- (quantum) data types allow for static type checking thus providing compile-time guarantees

Specification and Verification

- formal specification and verification
- operational or denotational semantics

Quantum Data Types

- data types allow to reason abstractly
- (quantum) data types allow for static type checking thus providing compile-time guarantees

Specification and Verification

- formal specification and verification
- operational or denotational semantics

Resource Sensitivity and Resource Estimation

- estimation of resource requirements (eg. number of elementary gates, expected runtime)
- transparancies of quantum error correction

Selinger's Quantum Programming Language

Quantum Flow Language

Selinger's Quantum Programming Language Quantum Flow Language

F

Selinger's Quantum Programming Language Quantum Flow Language

Selinger's Quantum Programming Language Quantum Flow Language

Selinger's Quantum Programming Language

Quantum Flow Language

Selinger's Quantum Programming Language

Quantum Flow Language

Quantum Flows Language (cont'd)

Focus on Unitary Transformation, Merge and Measurement

Focus on Unitary Transformation, Merge and Measurement

Example (Elementary Gates)

$$X := \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad \qquad H := \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \qquad \qquad T := \begin{pmatrix} 1 & 0 \\ 0 & e^{j\frac{\pi}{4}} \end{pmatrix}$$

Focus on Unitary Transformation, Merge and Measurement

Example (Elementary Gates)

$$\mathtt{X}:=egin{pmatrix} 0&1\ 1&0 \end{pmatrix}$$
 $\mathtt{H}:=rac{1}{\sqrt{2}}egin{pmatrix} 1&1\ 1&-1 \end{pmatrix}$ $\mathtt{T}:=egin{pmatrix} 1&0\ 0&e^{jrac{\pi}{4}} \end{pmatrix}$

Measurement

Measurement

• let $|\varphi\rangle$ be a pure state, s.t.

$$\left|\varphi\right\rangle = \begin{pmatrix} v \\ w \end{pmatrix} \qquad \left|\varphi\right\rangle \left\langle\varphi\right| = \begin{pmatrix} vv^{\dagger} & vw^{\dagger} \\ wv^{\dagger} & ww^{\dagger} \end{pmatrix}$$

Measurement

• let $| \varphi \rangle$ be a pure state, s.t.

$$\left|\varphi\right\rangle = \left(\frac{v}{w}\right) \qquad \qquad \left|\varphi\right\rangle\left\langle\varphi\right| = \left(\frac{vv^{\dagger} \mid vw^{\dagger}}{wv^{\dagger} \mid ww^{\dagger}}\right)$$

• measuring the first qubit of |arphi
angle in the computational basis, yields

$$\|v\|^2 \colon \left(\begin{array}{c|c} vv^{\dagger} & 0\\ \hline 0 & 0 \end{array} \right) \qquad \qquad \|w\|^2 \colon \left(\begin{array}{c|c} 0 & 0\\ \hline 0 & ww^{\dagger} \end{array} \right)$$

universität Innsbruck Formal Methods for Quantum Programs, Theory colloquium, March 23, 2022

Example (Coin Toss)

Semantical Program Equivalence

Semantical Program Equivalence

Semantical Program Equivalence: Program Optimisation

The Language QPL

QPL Termsstm, stm1, stm2::=new bit b:=0 | new qbit b:= $|0\rangle$ | discard x| b:=0 | b:=1 | q1, ..., qn *= S| skip | stm1; stm2 || if(b) then stm1 else stm2 | measure q then stm1 else stm2| while b stm| proc X: $\Gamma \rightarrow \Gamma'$ {stm1} in stm2 | y1, ..., ym=X(x1, ..., xn)

The Language QPL

QPL Termsstm, stm1, stm2::=new bit b:=0 | new qbit b:= $|0\rangle$ | discard x| b:=0 | b:=1 | q1, ..., qn *= S| skip | stm1; stm2 || if(b) then stm1 else stm2 | measure q then stm1 else stm2| while b stm| proc X: $\Gamma \rightarrow \Gamma'$ {stm1} in stm2 | y1, ..., ym=X(x1, ..., xn)

Comments

- proc X: $\Gamma \to \Gamma' \{ \mathtt{stm}_1 \} \text{ in stm}_2 \text{ defines a procedure with body } \mathtt{stm}_1 \text{ and scope } \mathtt{stm}_2$
- $y_1, \ldots, y_m = X(x_1, \ldots, x_n)$ denotes a procedure call

The Language QPL

QPL Termsstm, stm1, stm2::=new bit b:=0 | new qbit b:= $|0\rangle$ | discard x| b:=0 | b:=1 | q1, ..., qn *= S| skip | stm1; stm2 || if(b) then stm1 else stm2 | measure q then stm1 else stm2| while b stm| proc X: $\Gamma \rightarrow \Gamma'$ {stm1} in stm2 | y1, ..., ym=X(x1, ..., xn)

Comments

- proc $X \colon \Gamma \to \Gamma' \{ \mathtt{stm}_1 \} \text{ in } \mathtt{stm}_2 \text{ defines a procedure with body } \mathtt{stm}_1 \text{ and } \mathtt{scope } \mathtt{stm}_2$
- y₁,..., y_m=X(x₁,..., x_n) denotes a procedure call

- each edge in the quantum flow chart has been given an annotation in the form of a density matrix
- the semantics of a QPL program is now given as a mapping of the input density matrix to the output density matrix
- in order to show well-definedness these mapping are couched as morphisms of a category based on superoperators
- this yields a compositional denotational semantics

- each edge in the quantum flow chart has been given an annotation in the form of a density matrix
- the semantics of a QPL program is now given as a mapping of the input density matrix to the output density matrix
- in order to show well-definedness these mapping are couched as morphisms of a category based on superoperators
- this yields a compositional denotational semantics

Comparison							
	Allocation	Subroutines	Oracles	Data Types	Specification	Resources	
QPL	\checkmark	\checkmark	(√)	\checkmark	(√)	×	

- each edge in the quantum flow chart has been given an annotation in the form of a density matrix
- the semantics of a QPL program is now given as a mapping of the input density matrix to the output density matrix
- in order to show well-definedness these mapping are couched as morphisms of a category based on superoperators
- this yields a compositional denotational semantics

Comparison							
	Allocation	Subroutines	Oracles	Data Types	Specification	Resources	
QPL	\checkmark	\checkmark	(√)	\checkmark	(√)	×	
Quipper	\checkmark	\checkmark	\checkmark	\checkmark	(√)	×	

- each edge in the quantum flow chart has been given an annotation in the form of a density matrix
- the semantics of a QPL program is now given as a mapping of the input density matrix to the output density matrix
- in order to show well-definedness these mapping are couched as morphisms of a category based on superoperators
- this yields a compositional denotational semantics

Comparison								
	Allocation	Subroutines	Oracles	Data Types	Specification	Resources		
QPL	\checkmark	\checkmark	(√)	\checkmark	(√)	×		
Quipper	\checkmark	\checkmark	\checkmark	\checkmark	(√)	×		
Q#	\checkmark	\checkmark	\checkmark	\checkmark	×	×		

Program and Resource Analysis

Static Program Analysis

Definition (due to Z. Manna and A. Pnueli)

"The algorithmic discovery of properties of a program by inspection of the source text."

Static Program Analysis

Definition (due to Z. Manna and A. Pnueli)

"The algorithmic discovery of properties of a program by inspection of the source text."

Push-Button Automation

Static Program Analysis

Definition (due to Z. Manna and A. Pnueli)

"The algorithmic discovery of properties of a program by inspection of the source text."

Push-Button Automation

niversität

innsbruck

¹The problem is (highly) undecidable, to be precise it is Σ_2^0 -complete.

Formal Methods for Quantum Programs, Theory colloquium, March 23, 2022


```
year = ORIGINYEAR; /* = 1980 */
while (days > 365) {
    if (IsLeapYear(year)) {
        if (days > 366) {
            days -= 366;
            year += 1; }
    else {
            days -= 365;
            year += 1; }
}
```



```
year = ORIGINYEAR; /* = 1980 */
while (days > 365) {
    if (IsLeapYear(year)) '
        if (days > 366) {
            days -= 366;
            year += 1; }
    else {
            days -= 365;
            year += 1; }
}
```

D. Distefano, M. Fähndrich, F. Logozzo, and P. O'Hearn. Scaling Static Analyses at Facebook. *Commun. ACM*, 62(8):62–70, 2019.

universität innsbruck

D. Distefano, M. Fähndrich, F. Logozzo, and P. O'Hearn. Scaling Static Analyses at Facebook. *Commun. ACM*, 62(8):62–70, 2019.

universität innsbruck

Quantum Bugs

M. Paltenghi and M. Pradel.

Bugs in quantum computing platforms: An empirical study. CoRR, abs/2110.14560, 2022.

Quantum Bugs

- empirical study of bugs in a broad range of quantum computing platforms (eg. IBM's Qiskit, Google's Circ, Mircosoft's Q#)
- research methodology: search for commit message like "fix" together with evidence of a commit that patched the problem
- 223 bugs found, among them (almost) 40% quantum-specific

M. Paltenghi and M. Pradel.

Bugs in quantum computing platforms: An empirical study. CoRR, abs/2110.14560, 2022.

Quantum Bugs

- empirical study of bugs in a broad range of quantum computing platforms (eg. IBM's Qiskit, Google's Circ, Mircosoft's Q#)
- research methodology: search for commit message like "fix" together with evidence of a commit that patched the problem
- 223 bugs found, among them (almost) 40% quantum-specific
- bugs occur everywhere, quantum-specific ones parts that represent, compile or optimise quantum code
- classical bugs occur in seemingly easy adminstrative code, like infrastructural scripts
- study proposes a hierarchy of bug patterns: ten quantum-specific patterns

M. Paltenghi and M. Pradel.

Bugs in quantum computing platforms: An empirical study. CoRR, abs/2110.14560, 2022.

Incorrect Numerical Calculation

return pauli_string_phasor.PauliStringPhasor(
 PauliString(qubit_pauli_map=self._qubit_pauli_map),
 exponent_neg=+half_turns / 4,
 exponent_pos=-half_turns / 4)

Incorrect Numerical Calculation

return pauli_string_phasor.PauliStringPhasor(
 PauliString(qubit_pauli_map=self._qubit_pauli_map),
 exponent_neg=+half_turns / 2,
 exponent_pos=-half_turns / 2)

Incorrect Numerical Calculation

return pauli_string_phasor.PauliStringPhasor(
 PauliString(qubit_pauli_map=self._qubit_pauli_map),
 exponent_neg=+half_turns / 2,
 exponent_pos=-half_turns / 2)

Comments

- functional bugs clearly dominate non-functional bugs (like inefficient code)
- most likely bug symptoms are crashes or incorrect outputs; the latter are typically quantum-specific

Incorrect Numerical Calculation

return pauli_string_phasor.PauliStringPhasor(
 PauliString(qubit_pauli_map=self._qubit_pauli_map),
 exponent_neg=+half_turns / 2,
 exponent_pos=-half_turns / 2)

Comments

- functional bugs clearly dominate non-functional bugs (like inefficient code)
- most likely bug symptoms are crashes or incorrect outputs; the latter are typically quantum-specific
- testing doesn't help
- compile-time guarantees through better type systems or specification languages would

Incorrect Numerical Calculation

return pauli_string_phasor.PauliStringPhas PauliString(qubit_pauli_map=self._qub exponent_neg=+half_turns / 2, exponent_pos=-half_turns / 2

Comments

- functional bugs clear
- most likely bug su quantum-spe
- testing derivative
- compile-tik
 would

or incorrect outputs; the latter are typically

rough better type systems or specification languages

·eduire

Expected Cost Analysis for Quantum Programs

resources could be

- the expected runtime
- the expected number of quantum gates
- the amount of quantum resources (in an application-specific sense) required by quantum programs,

resources could be

- the expected runtime
- the expected number of quantum gates
- the amount of quantum resources (in an application-specific sense) required by quantum programs,

Our Results

formal method for an expected cost analysis providing a framework for future (partial) automation

resources could be

- the expected runtime
- the expected number of quantum gates
- the amount of quantum resources (in an application-specific sense) required by quantum programs,

Our Results

- formal method for an expected cost analysis providing a framework for future (partial) automation
- 2 computing the expected cost of several well-known quantum algorithms and protocols, such as
 - coin tossing
 - repeat until success
 - entangled state preparation
 - quantum walk

resources could be

- the expected runtime
- the expected number of quantum gates
- the amount of quantum resources (in an application-specific sense) required by quantum programs,

Our Results

- formal method for an expected cost analysis providing a framework for future (partial) automation
- 2 computing the expected cost of several well-known quantum algorithms and protocols, such as
 - coin tossing
 - repeat until success
 - entangled state preparation
 - quantum walk

Coin Tossing: Syntax by Example

$$CT(q) \triangleq x = true;$$
while(x){
 q *= H;
 x = meas(q);
 consume(1)
 }
stm_0

innsbruck

- iterated coin toss, probability of termination after *n* steps depends on initial state $|\varphi\rangle$ of qubit q
- loop body stm₀ consumes 1 resource
- overall probability of termination = 1

Coin Tossing: Syntax by Example

- a state σ is a pair (s,|arphi
 angle) consisting of a store s and a quantum state |arphi
 angle
- a configuration μ is pair (stm, σ)

 $CT(q) \triangleq x = true;$ while(x){
 q *= H;
 x = meas(q);
 consume(1)
 }
stm_0

- iterated coin toss, probability of termination after *n* steps depends on initial state $|\varphi\rangle$ of qubit q
- loop body stm₀ consumes 1 resource
- overall probability of termination = 1
Coin Tossing: Expected Cost Analysis

Manual Analysis

• let $(s, |\varphi\rangle)$ be a state, s.t.

•
$$s(x) = \text{true}$$

• $|\varphi\rangle = \alpha |\mathbf{0}\rangle + \beta |\mathbf{1}\rangle$
 $\text{ecost}_{CT(q)}(s, \begin{pmatrix} \alpha \\ \beta \end{pmatrix}) = \sup_{n \in \mathbb{N}} \left\{ 1 + p_1 \sum_{i=0}^{n} \frac{1}{2^i} \right\} = 1 + |\alpha - \beta|^2$

Coin Tossing: Expected Cost Analysis

Manual Analysis

• let (s, |arphi
angle) be a state, s.t.

•
$$s(x) = \text{true}$$

• $|\varphi\rangle = \alpha |\mathbf{0}\rangle + \beta |\mathbf{1}\rangle$
 $\text{ecost}_{CT(q)}(s, {\alpha \choose \beta}) = \sup_{n \in \mathbb{N}} \left\{ 1 + p_1 \sum_{i=0}^n \frac{1}{2^i} \right\} = 1 + |\alpha - \beta|^2$

• eg.
$$\operatorname{ecost}_{CT(q)}(s, |\mathbf{0}\rangle) = 2$$

Coin Tossing: Expected Cost Analysis

Manual Analysis

• let $(s, |\varphi\rangle)$ be a state, s.t. • s(x) = true• $|\varphi\rangle = \alpha |\mathbf{0}\rangle + \beta |\mathbf{1}\rangle$ $ecost_{CT(q)}(s, {\alpha \choose \beta}) = \sup_{n \in \mathbb{N}} \left\{ 1 + p_1 \sum_{i=0}^n \frac{1}{2^i} \right\} = 1 + |\alpha - \beta|^2$

• eg.
$$\mathsf{ecost}_{\mathcal{CT}(q)}(s, |\mathbf{0}\rangle) = 2$$

requires

universität

innsbruck

formal operational semantics

 $(\mathsf{roughly} [\mathtt{stm}]: \mathtt{State}
ightarrow \mathcal{D}(\mathtt{State}))$

- semantics accounts for resource consumption
- but tedious, error-prone calculations!

Quantum Expected Cost Transformer (generalisation of Hoare-style formal verification)

$$ext{qect}ig[\cdotig]ig\{\cdotig\}: ext{Program} o (ext{State} o \mathbb{R}^{+\infty}) o (ext{State} o \mathbb{R}^{+\infty})$$

Quantum Expected Cost Transformer

(generalisation of Hoare-style formal verification)

$$\operatorname{qect}\left[\cdot\right]\left\{\cdot\right\}:\operatorname{Program}
ightarrow(\operatorname{State}
ightarrow\mathbb{R}^{+\infty})
ightarrow(\operatorname{State}
ightarrow\mathbb{R}^{+\infty})$$
resources (expected costs)
available after execution

Quantum Expected Cost Transformer

(generalisation of Hoare-style formal verification)

resources required before execution

$$\operatorname{qect}\left[\cdot\right]\left\{\cdot\right\}:\operatorname{Program} o (\operatorname{State} o \mathbb{R}^{+\infty}) o (\operatorname{State} o \mathbb{R}^{+\infty})$$
resources (expected costs)
available after execution

Quantum Expected Cost Transformer

(generalisation of Hoare-style formal verification)

resources required before execution

$$\operatorname{qect}\left[\cdot\right]\left\{\cdot\right\}:\operatorname{Program} o (\operatorname{State} o \mathbb{R}^{+\infty}) o (\operatorname{State} o \mathbb{R}^{+\infty})$$

$$resources (expected costs)$$
available after execution

Theorem

The following identity hold, for all $\texttt{stm} \in \texttt{Statement}$ and $\sigma \in \texttt{State}$

$$\operatorname{qect}\left[\operatorname{stm}\right]\left\{\underline{0}\right\}(\sigma) = \operatorname{ecost}_{\operatorname{stm}}(\sigma)$$

stm	cost metric	expect cost	
coin tossing	# of loops	2	
repeat-until-success	# of $ au$ gates	<u>8</u> 3	
entangled state preparation	# of attempts for k qubits	$148 \cdot (k+4)$	
quantum walk on <i>n</i> -circle	# of loops	2 if started at position $ 1\rangle$	
		\mathbf{I} II Statted at DOSITION $ \mathbf{U}\rangle$	

 $CT(q) \triangleq x = true;$ while(x){ q *= H; x = meas(q); consume(1)}

- iterated coin toss
- loop body stm₀ consumes 1 resource
- overall probability of termination = 1

stm	cost metric	expect cost
coin tossing	# of loops	2
repeat-until-success	# of T gates	<u>8</u> 3
entangled state preparation	# of attempts for k qubits	$148 \cdot (k+4)$
quantum walk on <i>n</i> -circle	# of loops	2 if started at position $ 1 angle$
		1 if started at position $ 0\rangle$

stm	cost metric	expect cost
coin tossing	# of loops	2
repeat-until-success	# of T gates	<u>8</u> 3
entangled state preparation	# of attempts for k qubits	$148\cdot(k+4)$
quantum walk on <i>n</i> -circle	# of loops	2 if started at position $ {f 1} angle$
		1 if started at position $ 0 angle$

$CHAIN(k, extsf{q}_0, \dots, extsf{q}_{k+3}) riangleq$
\cdots
while $(0 \leq t \wedge t < k)$
$CHAIN4(q_{t+1}, q_{t+2}, q_{t+3}, q_{t+4});$
$FUSE(q_t, q_{t+1}, x);$
$if(x){t = t + 4}$ else ${t = t - 1};$
$if(t = -1){t = 0; q_0 = +\rangle}$ else {skip}
}

- prepare a graph state represented by a path on k qubits
- implemented with nested while loops

stm	cost metric	expect cost
coin tossing	# of loops	2
repeat-until-success	# of T gates	<u>8</u> 3
entangled state preparation	# of attempts for k qubits	$148 \cdot (k+4)$
quantum walk on <i>n</i> -circle	# of loops	2 if started at position $ 1\rangle$
		1 if started at position $ 0\rangle$

<pre>x^B = true; while(x){ x = meas(p); q *= H; q,p *= S; consume(1) }</pre>		 Hadamard quantum walk on an <i>n</i>-circle (Liu et al., 2019) cost analysis depends on quantum state loop body stm₀ consumes 1 resource
stm	cost metric	expect cost
coin tossing	# of loops	2
repeat-until-success	# of T gates	<u>8</u> 3
entangled state preparation	# of attempts for k	c qubits $148 \cdot (k+4)$
quantum walk on <i>n</i> -circle	# of loops	2 if started at position $ 1\rangle$ 1 if started at position $ 0\rangle$

universität

 $\begin{array}{l} \mathbf{x}^{\mathcal{B}} = \mathtt{true}; \quad \sum_{i=0}^{n-1} |L\rangle \left\langle L | \otimes |i \ominus 1\rangle \left\langle i | + \sum_{i=0}^{n-1} |R\rangle \left\langle R | \otimes |i \oplus 1\rangle \left\langle i \right| \right. \\ \texttt{while}(\mathbf{x}) \{ \\ \texttt{x} = \texttt{meas}(\mathbf{p}); \\ \texttt{q} *= \texttt{H}; \\ \texttt{q},\texttt{p} *= \texttt{S}; \\ \texttt{consume}(1) \\ \} \end{array}$

- Hadamard quantum walk on an *n*-circle (Liu et al., 2019)
- cost analysis depends on quantum state
- loop body stm₀ consumes 1 resource

stm	cost metric	expect cost
coin tossing	# of loops	2
repeat-until-success	# of T gates	<u>8</u> 3
entangled state preparation	# of attempts for k qubits	$148 \cdot (k+4)$
quantum walk on <i>n</i> -circle	# of loops	2 if started at position $ 1\rangle$
		1 if started at position $ 0\rangle$

 denotational semantics as a variant of the quantum expected cost transformer, employing density matrices

• denotational semantics as a variant of the quantum expected cost transformer, employing density matrices

$$\mathtt{qev}_{\mathtt{K}}\Big[\cdot\Big]\Big\{\cdot\Big\}: \mathtt{Program} o (\mathtt{State} o \mathtt{K}) o (\mathtt{State} o \mathtt{K})$$

• denotational semantics as a variant of the quantum expected cost transformer, employing density matrices $\{0,1\}^n \times \mathbb{Z}^m \to D_{2^k}$

$$\texttt{qev}_{K}\Big[\cdot\Big]\Big\{\cdot\Big\}:\texttt{Program}\rightarrow(\texttt{State}\rightarrow\texttt{K})\rightarrow(\texttt{State}\rightarrow\texttt{K})$$

• denotational semantics as a variant of the quantum expected cost transformer, employing density matrices $\{0,1\}^n \times \mathbb{Z}^m \to D_{2^k}$

$$\texttt{qev}_{K}\Big[\cdot\Big]\Big\{\cdot\Big\}:\texttt{Program}\rightarrow(\texttt{State}\rightarrow\texttt{K})\rightarrow(\texttt{State}\rightarrow\texttt{K})$$

• (partial) automation subject of future work

• denotational semantics as a variant of the quantum expected cost transformer, employing density matrices $\{0,1\}^n \times \mathbb{Z}^m \to D_{2^k}$

$$\texttt{qev}_{K}\Big[\cdot\Big]\Big\{\cdot\Big\}:\texttt{Program}\rightarrow(\texttt{State}\rightarrow\texttt{K})\rightarrow(\texttt{State}\rightarrow\texttt{K})$$

• (partial) automation subject of future work

Compari	ison					
	Allocation	Subroutines	Oracles	Data Types	Specification	Resources
qWhile	\checkmark	×	×	(√)	(√)	\checkmark

M. Avanzini, G. Moser, R. Péchoux, S. Perdrix, and V. Zamdzhiev. Quantum expectation transformers for cost analysis. *CoRR*, abs/2201.09361, 2022.

Thank You For Your Attention!

Quantum Expectation Transformer

stm	$qet[stm]{f}$
ϵ	f
skip	f
$\mathbf{x} = \mathbf{e}$	$f[\mathtt{x}:=\mathtt{e}]$
$\overline{q} *= U$	$f[U_{\overline{q}}]$
$\mathtt{x} = \mathtt{meas}(\mathtt{q})$	$ ho_0^{ m q} f[{ m x}:=0;{ m M}_0^{ m q}] + (1- ho_0^{ m q}) f[{ m x}:=1;{ m M}_1^{ m q}]$
consume(a)	$\max(\llbracket \mathtt{a} \rrbracket, \underline{0}) + f$
$stm_1; stm_2$	$\operatorname{qet}\left[\operatorname{stm}_{1}\right]\left\{\operatorname{qet}\left[\operatorname{stm}_{2}\right]\left\{f\right\}\right\}$
$\texttt{if(b)}\{\texttt{stm}_1\} \texttt{else} \{\texttt{stm}_2\}$	$\operatorname{qet}\left[\operatorname{stm}_{1} ight]\left\{f ight\}+_{\left[\!\left[\operatorname{b} ight]\!\right]}\operatorname{qet}\left[\operatorname{stm}_{2} ight]\left\{f ight\}$
$while(b){stm}$	$\left lfp\left(\lambda F.qet\left[stm\right] \left\{ F \right\} +_{\llbracket b \rrbracket} f \right) \right $

Coin Tossing: Formal Expected Cost Analysis

• we need to find an expectation g satisfying the following inequalities

$$\llbracket \neg \mathbf{x}
rbracket \cdot \mathbf{0} \leqslant g$$

 $\llbracket \mathbf{x}
rbracket \cdot \mathbf{qect} [\mathtt{stm}_0] \left\{ g
ight\} \leqslant g$

we set

$$g(s, \begin{pmatrix} \alpha \\ \beta \end{pmatrix}) = \llbracket x \rrbracket \cdot (1 + |\alpha - \beta|^2).$$

• expectation q satisfies the above inequality and we obtain

$$\begin{split} & \texttt{qect}\Big[\textit{CT}(\textbf{q})\Big] \Big\{\underline{0}\Big\} \leqslant \texttt{qect}\Big[\texttt{x}^{\mathcal{B}} = \texttt{true}\Big] \Big\{g\Big\} \\ &= g[\texttt{x} := \texttt{1}] = \lambda(s, \binom{\alpha}{\beta}).\texttt{1} + |\alpha - \beta|^2 \end{split}$$

universität innsbruck

universität innsbruck

Merge

b, c: bit
$$\bowtie (p_{00}, p_{01}, p_{10}, p_{11})$$

b, c: bit $\bowtie (p'_{00}, p'_{01}, p'_{10}, p'_{11})B$
b, c: $\bowtie (p_{00} + p'_{00}, p_{01} + p'_{01}, p_{10} + p'_{10}, p_{11} + p'_{11})$

- a state of a program is a pair (e, σ)
 - e is an edge (conceivable as program location)
 - $\sigma \colon \mathcal{V} \to \mathbb{B}$ is a store

- a state of a program is a pair (e, σ)
 - e is an edge (conceivable as program location)
 - $\sigma \colon \mathcal{V} \to \mathbb{B}$ is a store
- observe that program locations and stores are interchangable:
 - program locations (aka program counters) are often just variables
 - different stores are representable by different control paths

Density Matrices & Löwner partial order

Definition

a density matrix is a positive Hermitian matrix A s.t. tr(A) = 1; a subdensity matrix is a positive Hermitian matrix A s.t. $tr(A) \leq 1$

Example

consider quantum state $|\varphi\rangle = \frac{1}{\sqrt{2}} |\mathbf{0}\rangle - \frac{1}{\sqrt{2}} |\mathbf{1}\rangle$, which is representable by the density matrix $|\varphi\rangle \langle \varphi|$:

$$\left|\varphi\right\rangle\left\langle\varphi\right| = \begin{pmatrix} 1/2 & -1/2 \\ -1/2 & 1/2 \end{pmatrix}$$

let D_n denote the set of subdensity matrices of dimension n

Definition

for matrices $A, B \in D_n$, define $A \sqsubset B$, if B - A is positive

Proposition

the partial order set (D_n, \supseteq) is a CPO, that is, every increasing sequence admits least upper bounds