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A Bit of Context
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Experimental repetitive quantum error correction. Science, 332(6033), 2011.

Formal Methods for Quantum Programs, Theory colloquium, March 23, 2022 1



A Bit of Context

V. Dunjko and H. Briegel.
Machine learning & artificial intelligence in the quantum domain. arXiv, (1709.02779), 2017.
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A Bit of Context

H. Miyahara, K. Aihara, and W. Lechner.
Quantum expectation-maximization algorithm. Physical Review A, 101(1), 2020.
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A Bit of Context

V. Torggler, P. Aumann, H. Ritsch, and W. Lechner.
A quantum n-queens solver. Quantum, 3(149), 2019.
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A Bit of Context

V. Danos, E. Kashefi, and P. Panangaden.
The measurement calculus. J. ACM, 54(2):8, 2007.
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A Bit of Context

P. Selinger.
Towards a quantum programming language. Math. Struct. Comput. Sci., 14(4):527–586, 2004.
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Motivation to Study Quantum Computation
Viewpoint of Computer Science

1 quantum effects allows us to break the “strong” form of the Church-Turing
thesis—any reasonable model of computation is efficiently computable by a
Turing machine

2 theoretical computer science is about the study of computation, regardless of the
physical device implementing this computation

3 since our understanding of the world is quantum mechanical, TCS has to study
quantum computers, not classical ones

4 more practically, much of cryptography becomes insecure in a quantum world,
while entanglement makes it possible to design unconditionally secure key
distribution: post-quantum cryptography

5 similarly, as quantum computers become the new normal, a theory of quantum
programming languages is crucially needed
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Quantum Programming Languages

Program and Resource Analysis

Expected Cost Analysis for Quantum Programs



Quantum Programming Languages
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Requirements for Quantum Programming Languages

Allocation and Measurement

• allocate and measure quantum registers

• apply unitary operations

Reasoning about Subroutines

• defining and calling subroutines

• reversing subroutines

Building Quantum Oracles

• build quantum oracles from classical functions
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Quantum Data Types

• data types allow to reason abstractly

• (quantum) data types allow for static type checking thus providing compile-time
guarantees

Specification and Verification

• formal specification and verification

• operational or denotational semantics

Resource Sensitivity and Resource Estimation

• estimation of resource requirements (eg. number of elementary gates, expected
runtime)

• transparancies of quantum error correction
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Selinger’s Quantum Programming Language
Quantum Flow Language

input p, q : qbit

measure p

q ∗= X p ∗= X

◦

output p, q : qbit

p, q : qbit

0 1

p, q : qbit p, q : qbit

p, q : qbit p, q : qbit

p, q : qbit

F : D22 → D22 1/
√

2 |00〉 + 1/
√

2 |01〉1/
√

2 |00〉 + 1/
√

2 |10〉

F

1/
√

2 |00〉 + 1/
√

2 |01〉1/
√

2{|01〉} + 1/
√

2{|00〉}
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Selinger’s Quantum Programming Language
Quantum Flow Language
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Quantum Flows Language (cont’d)

input p, q : qbit

measure p

q ∗= X p ∗= X

◦

output p, q : qbit

p, q : qbit ./

(
A B

C D

)

0 1

p, q : qbit ./

(
A 0

0 0

)
p, q : qbit ./

(
0 0

0 D

)

p, q : qbit ./

(
XAX† 0

0 0

)
p, q : qbit ./

(
D 0

0 0

)

p, q : qbit ./

(
XAX† + D 0

0 0

)
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Focus on Unitary Transformation, Merge and Measurement

Unitary Transformation

q ∗= S

q : qbit, Γ ./ A

q : qbit, Γ ./ (S ⊗ I) A (S ⊗ I)†

Merge

◦
Γ ./ A Γ ./ B

Γ ./ A + B

Example (Elementary Gates)

X :=

(
0 1

1 0

)
H :=

1√
2

(
1 1

1 −1

)
T :=

(
1 0

0 ei
π
4

)
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Measurement

measure q

q : qbit, Γ ./

(
A B

C D

)

0 1

q : qbit, Γ ./

(
A 0

0 0

)
q : qbit, Γ ./

(
0 0

0 D

)

• let |ϕ〉 be a pure state, s.t.

|ϕ〉 =

(
v

w

)
|ϕ〉 〈ϕ| =

(
vv† vw†

wv† ww†

)
• measuring the first qubit of |ϕ〉 in the computational basis, yields

‖v‖2 :

(
vv† 0

0 0

)
‖w‖2 :

(
0 0

0 ww†

)
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Example (Coin Toss)

new qbit q := |0〉

q ∗= H

measure q

discard q discard q

Γ

./ A

q : qbit, Γ

./

(
A 0

0 0

)

q : qbit, Γ

./ 1
2

(
A A

A A

)

0 1

1
2

(
A 0

0 0

)
./

q : qbit, Γ q : qbit, Γ

./ 1
2

(
0 0

0 A

)

Γ

./ 1
2A

Γ

./ 1
2A
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Semantical Program Equivalence: Program Optimisation

coin toss

q ∗=

(
1 0

0 −1

)

◦

Γ ./

(
A B

C D

)

0 1

Γ ./ 1
2

(
A B

C D

)

Γ ./ 1
2

(
A −B
−C D

)Γ ./ 1
2

(
A B

C D

)

Γ ./

(
A 0

0 D

)

measure q

◦

Γ ./

(
A B

C D

)

0 1

Γ ./

(
A 0

0 0

)
Γ ./

(
0 0

0 D

)

q : qbit, Γ ./

(
A 0

0 D

)beware
th

e
power of

denota
tio

nal se
m

antic
s
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The Language QPL

QPL Terms

stm, stm1, stm2 ::= new bit b:=0 | new qbit b:= |0〉 | discard x

| b:=0 | b:=1 | q1, . . . , qn ∗= S

| skip | stm1; stm2 |
| if(b) then stm1 else stm2 | measure q then stm1 else stm2

| while b stm

| proc X : Γ→ Γ′ {stm1} in stm2 | y1, . . . , ym=X(x1, . . . , xn)

Comments

• proc X : Γ→ Γ′ {stm1} in stm2 defines a procedure with body stm1 and scope stm2

• y1, . . . , ym=X(x1, . . . , xn) denotes a procedure call
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Summary on QPL

• each edge in the quantum flow chart has been given an annotation in the form of
a density matrix
• the semantics of a QPL program is now given as a mapping of the input density

matrix to the output density matrix
• in order to show well-definedness these mapping are couched as morphisms of a

category based on superoperators
• this yields a compositional denotational semantics

Comparison

Allocation Subroutines Oracles Data Types Specification Resources

QPL X X (X) X (X) ×

Quipper X X X X (X) ×
Q# X X X X × ×
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Program and Resource Analysis



Static Program Analysis

Definition (due to Z. Manna and A. Pnueli)

“The algorithmic discovery of properties of a program by inspection of the source
text.”

Push-Button Automation

complexity bound 3/2 log2(|t|)

unknown1

ST.splay

1

The problem is (highly) undecidable, to be precise it is Σ0
2-complete.
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Zune Bug: December 31, 2008

year = ORIGINYEAR; /* = 1980 */

while (days > 365) {

if (IsLeapYear(year)) {

if (days > 366) {

days -= 366;

year += 1; } }

else {

days -= 365;

year += 1; }

}

D. Distefano, M. Fähndrich, F. Logozzo, and P. O’Hearn.
Scaling Static Analyses at Facebook. Commun. ACM, 62(8):62–70, 2019.

SOLV
ED!
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Quantum Bugs

• empirical study of bugs in a broad range of quantum computing platforms (eg.
IBM’s Qiskit, Google’s Circ, Mircosoft’s Q#)

• research methodology: search for commit message like “fix” together with
evidence of a commit that patched the problem

• 223 bugs found, among them (almost) 40% quantum-specific

• bugs occur everywhere, quantum-specific ones parts that represent, compile or
optimise quantum code

• classical bugs occur in seemingly easy adminstrative code, like infrastructural
scripts

• study proposes a hierarchy of bug patterns: ten quantum-specific patterns

M. Paltenghi and M. Pradel.
Bugs in quantum computing platforms: An empirical study. CoRR, abs/2110.14560, 2022.
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Quantum-Specific Patterns

Incorrect Numerical Calculation

return pauli_string_phasor . PauliStringPhasor (
PauliString (qubit_pauli_map=sel f . _qubit_pauli_map ) ,

exponent_neg=+half_turns / 4,
exponent_pos=−half_turns / 4)

Comments
• functional bugs clearly dominate non-functional bugs (like inefficient code)
• most likely bug symptoms are crashes or incorrect outputs; the latter are typically

quantum-specific

• testing doesn’t help
• compile-time guarantees through better type systems or specification languages

would

not at all
so

lved

fo
rm

al m
eth

ods re
quire

d
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Expected Cost Analysis for Quantum Programs



Resource Analysis of Quantum Programs

resources could be
• the expected runtime
• the expected number of quantum gates
• the amount of quantum resources (in an application-specific sense) required by

quantum programs,

Our Results

1 formal method for an expected cost analysis providing a framework for future
(partial) automation

2 computing the expected cost of several well-known quantum algorithms and
protocols, such as
• coin tossing
• repeat until success
• entangled state preparation
• quantum walk
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Coin Tossing: Syntax by Example

stm, stm1, stm2 ::= skip | xK = eK | q ∗= U | xB = meas(q) | consume(a)

| stm1; stm2 | if (b) {stm1} else {stm2} | while(b) {stm}

• a state σ is a pair (s, |ϕ〉) consisting of a store s and a quantum state |ϕ〉
• a configuration µ is pair (stm, σ)

CT(q) , x = true;
while(x){

q ∗= H;
x = meas(q);
consume(1)
}

stm0

• iterated coin toss, probability
of termination after n steps
depends on initial state |ϕ〉 of
qubit q

• loop body stm0 consumes 1
resource

• overall probability of
termination = 1

Formal Methods for Quantum Programs, Theory colloquium, March 23, 2022 18



Coin Tossing: Syntax by Example

stm, stm1, stm2 ::= skip | xK = eK | q ∗= U | xB = meas(q) | consume(a)

| stm1; stm2 | if (b) {stm1} else {stm2} | while(b) {stm}

• a state σ is a pair (s, |ϕ〉) consisting of a store s and a quantum state |ϕ〉
• a configuration µ is pair (stm, σ)

CT(q) , x = true;
while(x){

q ∗= H;
x = meas(q);
consume(1)
}

stm0

• iterated coin toss, probability
of termination after n steps
depends on initial state |ϕ〉 of
qubit q

• loop body stm0 consumes 1
resource

• overall probability of
termination = 1

Formal Methods for Quantum Programs, Theory colloquium, March 23, 2022 18



Coin Tossing: Expected Cost Analysis

Manual Analysis

• let (s, |ϕ〉) be a state, s.t.
• s(x) = true
• |ϕ〉 = α |0〉+ β |1〉

ecostCT(q)(s,

(
α

β

)
) = sup

n∈N

{
1 + p1

∑n
i=0

1
2i

}
= 1 + |α− β|2

• eg. ecostCT(q)(s, |0〉) = 2

requires

• formal operational semantics (roughly [stm] : State→ D(State))

• semantics accounts for resource consumption

• but tedious, error-prone calculations!
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Quantum Expected Cost Transformer
(generalisation of Hoare-style formal verification)

qect
[
·
]{
·
}

: Program→ (State→ R+∞)→ (State→ R+∞)

Theorem

The following identity hold, for all stm ∈ Statement and σ ∈ State

qect
[
stm

]{
0
}

(σ) = ecoststm(σ)
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Illustrating Examples

expected cost 2

unknown1

coin tossing

not (y
et)

auto
m

ate
d

stm cost metric expect cost

coin tossing # of loops 2

repeat-until-success # of T gates 8
3

entangled state preparation # of attempts for k qubits 148 · (k + 4)

quantum walk on n-circle # of loops 2 if started at position |1〉
1 if started at position |0〉
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Illustrating Examples
CT(q) , x = true;

while(x){
q ∗= H;
x = meas(q);
consume(1)
}
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• loop body stm0 consumes 1
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• overall probability of
termination = 1
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Illustrating Examples
CHAIN(k, q0, . . . , qk+3) ,
. . .
while(0 ≤ t ∧ t < k){
CHAIN4(qt+1, qt+2, qt+3, qt+4);
FUSE(qt, qt+1, x);
if(x){t = t + 4} else {t = t− 1};
if(t = −1){t = 0; q0 = |+〉} else {skip}

}

• prepare a graph state
represented by a path on k
qubits

• implemented with nested
while loops

stm cost metric expect cost

coin tossing # of loops 2

repeat-until-success # of T gates 8
3

entangled state preparation # of attempts for k qubits 148 · (k + 4)

quantum walk on n-circle # of loops 2 if started at position |1〉
1 if started at position |0〉
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Illustrating Examples

xB = true;
while(x){
x = meas(p);
q ∗= H;
q, p ∗= S;
consume(1)

}

• Hadamard quantum walk on
an n-circle (Liu et al., 2019)

• cost analysis depends on
quantum state

• loop body stm0 consumes 1
resource
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Illustrating Examples
xB = true;
while(x){
x = meas(p);
q ∗= H;
q, p ∗= S;
consume(1)

}

Σn−1
i=0 |L〉 〈L| ⊗ |i	 1〉 〈i|+ Σn−1

i=0 |R〉 〈R| ⊗ |i⊕ 1〉 〈i| • Hadamard quantum walk on
an n-circle (Liu et al., 2019)
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Summary on Resource Analysis of Quantum Programs

• denotational semantics as a variant of the quantum expected cost transformer,
employing density matrices

qevK

[
·
]{
·
}

: Program→ (State→ K)→ (State→ K)

• (partial) automation subject of future work

Comparison

Allocation Subroutines Oracles Data Types Specification Resources

qWhile X × × (X) (X) X

M. Avanzini, G. Moser, R. Péchoux, S. Perdrix, and V. Zamdzhiev.
Quantum expectation transformers for cost analysis. CoRR, abs/2201.09361, 2022.
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Thank You For Your Attention!
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Quantum Expectation Transformer

stm qet
[
stm

]{
f
}

ε f

skip f

x = e f [x := e]

q ∗= U f [Uq]

x = meas(q) pq0f [x := 0; M
q
0] + (1− pq0)f [x := 1; M

q
1]

consume(a) max(JaK ,0) + f

stm1; stm2 qet
[
stm1

]{
qet

[
stm2

]{
f
}}

if(b){stm1} else {stm2} qet
[
stm1

]{
f
}

+JbK qet
[
stm2

]{
f
}

while(b){stm} lfp
(
λF.qet

[
stm

]{
F
}

+JbK f
)

Formal Methods for Quantum Programs, Theory colloquium, March 23, 2022 24



Coin Tossing: Formal Expected Cost Analysis

• we need to find an expectation g satisfying the following inequalities

J¬xK · 0 6 g

JxK · qect
[
stm0

]{
g
}
6 g

• we set

g(s,

(
α

β

)
) = JxK · (1 + |α− β|2).

• expectation q satisfies the above inequality and we obtain

qect
[
CT(q)

]{
0
}
6 qect

[
xB = true

]{
g
}

= g[x := 1] = λ(s,

(
α

β

)
).1 + |α− β|2
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QPL: Classic Part
input b, c : bit

branch b

b:=c

c:=0

◦

output b, c : bit

b, c : bit

./ (p00,p01,p10,p11)

1

b, c : bit

./ (0,0,p10,p11)

b, c : bit

./ (p10,0,0,p11)

b, c : bit

./ (p10,0,p11)

(p00,p10,0,0) ./

b, c : bit

b, c : bit

./ (p00 + p10,p01,p11,0)

0

F : D(B2)→ D(B2) (p00,p01,p10,p11)

F

(p00 + p10,p01,p11,0)
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Classical Flow Charts

Branching

branch b

b, c : bit ./ (p00,p01,p10,p11)

0 1

b, c : bit ./ (p00,p01,0,0) b, c : bit ./ (0,0,p10,p11)

• a state of a program is a pair (e, σ)
• e is an edge (conceivable as program location)
• σ : V → B is a store

• observe that program locations and stores are interchangable:
• program locations (aka program counters) are often just variables
• different stores are representable by different control paths
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Classical Flow Charts

Merge

◦
b, c : bit ./ (p00,p01,p10,p11) b, c : bit ./ (p′00,p

′
01,p

′
10,p

′
11)B

b, c : ./ (p00 + p′00,p01 + p′01,p10 + p′10,p11 + p′11)

• a state of a program is a pair (e, σ)
• e is an edge (conceivable as program location)
• σ : V → B is a store

• observe that program locations and stores are interchangable:
• program locations (aka program counters) are often just variables
• different stores are representable by different control paths
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Density Matrices & Löwner partial order

Definition

a density matrix is a positive Hermitian matrix A s.t. tr(A) = 1; a subdensity matrix is
a positive Hermitian matrix A s.t. tr(A) 6 1

Example

consider quantum state |ϕ〉 = 1√
2
|0〉 − 1√

2
|1〉, which is representable by the density

matrix |ϕ〉 〈ϕ|:

|ϕ〉 〈ϕ| =

(
1/2 −1/2

−1/2 1/2

)
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let Dn denote the set of subdensity matrices of dimension n

Definition

for matrices A,B ∈ Dn, define A @ B, if B− A is positive

Proposition

the partial order set (Dn,w) is a CPO, that is, every increasing sequence admits least
upper bounds
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