M universitat
™ innsbruck

Resource-aware programming ...

or what can we learn from Meltdown and Spectre

Georg Moser

cbr.uibk.ac.at

cbr.uibk.ac.at

Remember these Guys...

YEditor’s Letter, CACM Vol. 61, No. 9

M universitat

 innsbruck Resource-Aware Programming, Shonan Seminar, Higher-order Complexity Theory and its Applications, Oct. 8, 2019

Remember these Guys ...

High-Level Analysis’®

Because Spectre and Meltdown exploit the performance visibility of specula-
tive actions to create information side channels, they extend the functional
specification of the architecture to include its detailed performance.

LEditor’s Letter, CACM Vol. 61, No. 9

W universitat

innsbruck Resource-Aware Programming, Shonan Seminar, Higher-order Complexity Theory and its Applications, Oct. 8, 2019 1

Remember these Guys ...

High-Level Analysis’®

Because Spectre and Meltdown exploit the performance visibility of specula-
tive actions to create information side channels, they extend the functional
specification of the architecture to include its detailed performance.

[M]aking strong assurances of application security on a computing system re-
quires detailed performance information.

LEditor’s Letter, CACM Vol. 61, No. 9

W universitat
innsbruck

Resource-Aware Programming, Shonan Seminar, Higher-order Complexity Theory and its Applications, Oct. 8, 2019 1

Resource as First-Order Citizens

/%

sorting of a list |1| using |compare| as a comparison function
*/

sort :: (1: list A) -> (compare: A -> A -> bool) -> list A

| assuming |

the number of elements of |1| is bounded by Inl
the size of the elements of |1| is bounded by I[m]|

|then |
the number of elements of the result is bounded by In]|
the size of the elements of the result is bounded by [m|
the number of calls to |compare| is bounded by |n * log (n)l|
the size of both arguments in all calls to |compare| are
bounded by |m|

|requiring|
sequential time |8 * n * log(n) + 4 * n + 3|
parallel time |6 * log(mn) * log(mn) + 2|
storage space |3 * n * m + 2 * m]|

= m}:;’gﬁa‘éﬁt Resource-Aware Programming, Shonan Seminar, Higher-order Complexity Theory and its Applications, Oct. 8, 2019 2

Outline

@ Logical Foundations and Potential Use Cases

@ TiML: A Functional Language for Practical Complexity Analysis with
Invariants

@ Complexity of Interaction

= %"nr}]'gglfa'éﬁt Resource-Aware Programming, Shonan Seminar, Higher-order Complexity Theory and its Applications, Oct. 8, 2019

M universitat
™ innsbruck

Logical Foundations and Potential Use Cases

TiML: A Functional Language for Practial Complexity Analysis with Invariants

® ML-like language with time-complexity annotations in types

® uses indexed types to express size and worst-case runtime complexity
allows refinment sorts to constrain indices

focus is on user-defined annotations, efficient type checking and usability
® allows pattern based type inference, eg. incorporating the Master Theorem

u ?Jnr::\slg;aléﬁt Resource-Aware Programming, Shonan Seminar, Higher-order Complexity Theory and its Applications, Oct. 8, 2019 4

TiML: A Functional Language for Practial Complexity Analysis with Invariants

ML-like language with time-complexity annotations in types

uses indexed types to express size and worst-case runtime complexity

allows refinment sorts to constrain indices

focus is on user-defined annotations, efficient type checking and usability
® allows pattern based type inference, eg. incorporating the Master Theorem

Complexity of Interaction

® runtime and space complexity analysis of interaction net systems

® uses sized types and scheduled types, the latter govern productivity of rules in
parallel computation

® [Ns provide an intermediary representation of ML-like languages

® graph-based computation model generalising linear logic proof nets

u f’nnr:;’g;a'ctﬁt Resource-Aware Programming, Shonan Seminar, Higher-order Complexity Theory and its Applications, Oct. 8, 2019 4

Use Cases

High Performance Computing

W universitat

innsbruck Resource-Aware Programming, Shonan Seminar, Higher-order Complexity Theory and its Applications, Oct. 8, 2019

Edge/Fog/Cloud Computing

Cloud Tenant

Cloud Provider

W universitat

innsbruck Resource-Aware Programming, Shonan Seminar, Higher-order Complexity Theory and its Applications, Oct. 8, 2019 6

Edge/Fog/Cloud Computing

/” (Z)

|

e |
N

Cloud Tenant

Execution Platform

W universitat

innsbruck Resource-Aware Programming, Shonan Seminar, Higher-order Complexity Theory and its Applications, Oct. 8, 2019 6

Edge/Fog/Cloud Computing

Automation aka
Type Inference

Cloud Tenant

|
@

Resource-Aware

Execution Platform
Programming

W universitat

innsbruck Resource-Aware Programming, Shonan Seminar, Higher-order Complexity Theory and its Applications, Oct. 8, 2019 6

Edge/Fog/Cloud Computing

Automation aka
Type Inference

Resource-Aware .
Execution Platform

Programming

W universitat

innsbruck Resource-Aware Programming, Shonan Seminar, Higher-order Complexity Theory and its Applications, Oct. 8, 2019 6

M universitat
™ innsbruck

TiML: A Functional Language for Practical Complexity
Analysis with Invariants

A “third way” for Resource Analysis

datatype list «

{N} = Nil of 1list a {0}
|

Cons of a * list a {n} --> list a {n+1}

fun foldl [a B] {m n : N} (f a * B -m-> 3 acc (1 : list a {n})
return § using (M+4) * n =
case 1 of
[l => acc

| x :: xs => foldl £ (f (x, acc)) xs

indexed type system induces the following constraint problem

vm,n,n'n"+1=n=m+4+ (m+4)n’ < (m+4)n

@ Peng Wang, Di Wang, and Adam Chlipala.

TiML: A Functional Language for Practical Complexity Analysis with Invariants.
Proc. ACM on Programming Languages, 1(OOPSLA):79:1-79:26, 2017.

W universitat
H innsbruck

Resource-Aware Programming, Shonan Seminar, Higher-order Complexity Theory and its Applications, Oct. 8, 2019

Type Checking and Inference

® evaluated on medium-sized benchmarks; list and tree operations as well as
amortised data structures

® type checking is fast; annotation burden is significant

W universitat

innsbruck Resource-Aware Programming, Shonan Seminar, Higher-order Complexity Theory and its Applications, Oct. 8, 2019 8

Type Checking and Inference

® evaluated on medium-sized benchmarks; list and tree operations as well as
amortised data structures

® type checking is fast; annotation burden is significant
® type inference allows big-O notation in abstract indices
® egindex sort T_msort represents O(mnlogn)

u ?Jnnr:\slg;alctﬁt Resource-Aware Programming, Shonan Seminar, Higher-order Complexity Theory and its Applications, Oct. 8, 2019 8

Type Checking and Inference

evaluated on medium-sized benchmarks; list and tree operations as well as
amortised data structures

type checking is fast; annotation burden is significant
type inference allows big-O notation in abstract indices
eg index sort T_msort represents O(mnlogn)
pattern-based type inference is restrictive

a number of benchmark example can be analysed fully automatically by various
tools (sorting, functional queues, etc.)

W universitat
innsbruck

Resource-Aware Programming, Shonan Seminar, Higher-order Complexity Theory and its Applications, Oct. 8, 2019 8

Type Checking and Inference

® evaluated on medium-sized benchmarks; list and tree operations as well as
amortised data structures

® type checking is fast; annotation burden is significant
® type inference allows big-O notation in abstract indices
® egindex sort T_msort represents O(mnlogn)

® pattern-based type inference is restrictive

® a number of benchmark example can be analysed fully automatically by various
tools (sorting, functional queues, etc.)

Usability

[...] an undergraduate student with background in SML took just one day to
become fluent in writing and annotating TiML programs.

W universitat

innsbruck Resource-Aware Programming, Shonan Seminar, Higher-order Complexity Theory and its Applications, Oct. 8, 2019 8

Interlude: Automated Amortised Resource Analysis

Example (TiML benchmark example)

empty x = (nil,nil);

checkF (f,r) = match f with
| nil -> (rev(r),nil)
| (x::xs8) -> (f,r);

snoc (queue,x) = match queue with
| (£,r) -> checkF(f,x::r);

eng n = match n with

| 0 -> empty ()

| S n' -> snoc(enq(n'),n');
main = enq 3;

main = ([0],[3,2,1])

= %Jnr:]';/glfa'ctﬁt Resource-Aware Programming, Shonan Seminar, Higher-order Complexity Theory and its Applications, Oct. 8, 2019 9

Definition (Annotated Type System for TRSs (selection))

f a function symbol [A; x - x As] & C € F(f)
o
x1:A1,...,x,,:An}*f(xl,...,xn):C

W universitat

innsbruck Resource-Aware Programming, Shonan Seminar, Higher-order Complexity Theory and its Applications, Oct. 8, 2019 10

Definition (Annotated Type System for TRSs (selection))

f a function symbol [A; x - x As] & C € F(f)
o
x1:A1,...,x,,:An}*f(xl,...,xn):C
p p Pn
Xl:Al,...,Xn:An}if(Xl,...’Xn):C rl}iltlAl A rn}itn:An
D
rl,...,rn}if(tl,...,tn):c

W universitat

innsbruck Resource-Aware Programming, Shonan Seminar, Higher-order Complexity Theory and its Applications, Oct. 8, 2019 10

Definition (Annotated Type System for TRSs (selection))

f a function symbol [A; x - x As] & C € F(f)
x1:A1,...,x,,:An}£f(xl,...,xn):C x:A}gx:A
p p Pn
Xl:Al,...,Xn:An}if(Xl,...’Xn):C rl}iltlAl A rn}itn:An
D
rl,...,rn}if(tl,...,tn):c

rtec
Xx:A—tC
- fjnnr:;’g;alctﬁt Resource-Aware Programming, Shonan Seminar, Higher-order Complexity Theory and its Applications, Oct. 8, 2019 10

Definition (Annotated Type System for TRSs (selection))

f a function symbol [A; x - x As] & C € F(f)
x1:A1,...,x,,:An}£f(xl,...,xn):C x:A}gx:A
p p Pn
Xl:Al,...,Xn:An}if(Xl,...’Xn):C rl}iltlAl A rn}itn:An
D
rl,...,rn}if(tl,...,tn):c

p p
ri-ec [x: ALy A [tx,y]l: € Y(A|A1,A)
p p
Mx:A—tC MzA—t[z,z:C
u iljnnri\slg;aictet Resource-Aware Programming, Shonan Seminar, Higher-order Complexity Theory and its Applications, Oct. 8, 2019 10

Definition (Annotated Type System for TRSs (selection))

f a function symbol [A; x - x As] & C € F(f)
x1:A1,...,x,,:An|£f(xl,...,xn):C x:A|£x:A

p P Pn
Xl:Al,...7Xn:Anl_of(X]_./...’Xn):C r]_l_ltlAl o rnl_tn:An
P
r]_,...,rn|_f(t1,...7tn):c

ri®ec Mx:A1y Az [-tx,y]:C Y(A|A1,A)

m rzA |ﬂ tlz,z]: C

Theorem
let TRS R and subsitution o be well-typed, suppose I Iﬁ t:A and to %7”{ v then

S(o:N) —d(v:A)+p>m

u f‘n”r{;’glfa'gﬁt Resource-Aware Programming, Shonan Seminar, Higher-order Complexity Theory and its Applications, Oct. 8, 2019 10

Definition (Annotated Type System for TRSs (selection))

f a function symbol [A; x - x As] & C € F(f)
x1:A1,...,x,,:An|£f(xl,...,xn):C x:A|2x:A

p P Pn
Xl:Al,...7Xn:Anl_of(X]_./...’Xn):C r]_l_ltlAl o rnl_tn:An
P
r]_,...,rn|_f(t1,...7tn):c

rec Mx:A1y Az [-tx,y]:C Y(A|A1,A)

m rzA |ﬂ tlz,z]: C

Theorem
let TRS R and subsitution o be well-typed, suppose I Iﬁ t:A and to %7”{ v then

S(o:N) —d(v:A)+p>m

u f‘n”r{;’glfa'gﬁt Resource-Aware Programming, Shonan Seminar, Higher-order Complexity Theory and its Applications, Oct. 8, 2019 10

M universitat
™ innsbruck

Complexity of Interaction

A Logic-Based Computation Model for Distributed
Computing T

m_ n

® graph-based
® linear logic proof nets

N(e, 8)

® benign parallel computations A wln

® asynchronous, local inferences - .
m 1

W universitat

innsbruck Resource-Aware Programming, Shonan Seminar, Higher-order Complexity Theory and its Applications, Oct. 8, 2019

11

A Logic-Based Computation Model for Distributed
Computing

® graph-based

¢ linear logic proof nets f

® benign parallel computations I
Ii:.t|'}=I .Il.'l,.'L = 7}

® asynchronous, local inferences

W universitat

innsbruck Resource-Aware Programming, Shonan Seminar, Higher-order Complexity Theory and its Applications, Oct. 8, 2019 11

A Logic-Based Computation Model for Distributed
Computing

® graph-based

list AY —F
¢ linear logic proof nets !
® benign parallel computations

list 57 A — B)

® asynchronous, local inferences

® interaction nets provide a Turing-complete computation model, where distribution
of computation is natively build in

® intermediary representation language, programs need to be compiled to

u ?Jnr::\slg;aléﬁt Resource-Aware Programming, Shonan Seminar, Higher-order Complexity Theory and its Applications, Oct. 8, 2019 11

A Logic-Based Computation Model for Distributed
Computing

® graph-based

list AY —F
¢ linear logic proof nets !
® benign parallel computations

list 57 A — B)

® asynchronous, local inferences

® interaction nets provide a Turing-complete computation model, where distribution
of computation is natively build in

® intermediary representation language, programs need to be compiled to
® resource analysis flr sequential/parallel/distributed computation, no tool support

- iunnr:\slg;aléﬁt Resource-Aware Programming, Shonan Seminar, Higher-order Complexity Theory and its Applications, Oct. 8, 2019 11

Implementation of Interaction Nets on a Grid

computation is localised

ajfafiatastunfuaaganfonfufaalask
EEEE.@_iEE..EE

| ;Egggg..g
%ﬁ@gg

EEEEE@EEEEEEEE

12

s, Oct. 8, 2019

r, Higher-order Complexity Theory and its Application:

Semina

e-Aware Programming, Shonan

Resourc

W universitat
H innsbruck

Complexity of Interaction

® the types associated to the ports are refined by
sized types and scheduled types

® runtime/space/productivity analysis

® provides a resource analysis for sequential and
parallel execution

¢ scheduled types guarantee availability pace of data

® resource analysis works for higher-order, based on
a weak sequential cost model

@ S. Gimenez, GM.
The Complexity of Interaction.
In Proc. 43th POPL, pages 243-255, 2016

u iunr::\slgltaléﬁt Resource-Aware Programming, Shonan Seminar, Higher-order Complexity Theory and its Applications, Oct. 8, 2019 13

Thank You for Your Attention

W universitat
innsbruck

Resource-Aware Programming, Shonan Seminar, Higher-order Complexity Theory and its Applications, Oct. 8, 2019

14

	Logical Foundations and Potential Use Cases
	TiML: A Functional Language for Practical Complexity Analysis with Invariants
	Complexity of Interaction

