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Remember these Guys . . .

High-Level Analysis1

Because Spectre and Meltdown exploit the performance visibility of specula-
tive actions to create information side channels, they extend the functional
specification of the architecture to include its detailed performance.

[M]aking strong assurances of application security on a computing system re-
quires detailed performance information.

1Editor’s Letter, CACM Vol. 61, No. 9
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Resource as First-Order Citizens
Example

/*

sorting of a list |l| using |compare| as a comparison function

*/

sort :: (l: list A) -> (compare: A -> A -> bool) -> list A

|assuming|

the number of elements of |l| is bounded by |n|

the size of the elements of |l| is bounded by |m|

|then|

the number of elements of the result is bounded by |n|

the size of the elements of the result is bounded by |m|

the number of calls to |compare| is bounded by |n * log (n)|

the size of both arguments in all calls to |compare| are

bounded by |m|

|requiring|

sequential time |8 * n * log(n) + 4 * n + 3|

parallel time |6 * log(n) * log(n) + 2|

storage space |3 * n * m + 2 * m|
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Outline

Logical Foundations and Potential Use Cases

TiML: A Functional Language for Practical Complexity Analysis with
Invariants

Complexity of Interaction
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Logical Foundations and Potential Use Cases



TiML: A Functional Language for Practial Complexity Analysis with Invariants

• ML-like language with time-complexity annotations in types

• uses indexed types to express size and worst-case runtime complexity

• allows refinment sorts to constrain indices

• focus is on user-defined annotations, efficient type checking and usability

• allows pattern based type inference, eg. incorporating the Master Theorem

Complexity of Interaction

• runtime and space complexity analysis of interaction net systems

• uses sized types and scheduled types, the latter govern productivity of rules in
parallel computation

• INs provide an intermediary representation of ML-like languages

• graph-based computation model generalising linear logic proof nets
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Use Cases

High Performance Computing
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Edge/Fog/Cloud Computing

Cloud Tenant

Cloud Provider

Execution Platform
Resource-Aware

Programming

Automation aka

Type Inference

FIRST CLASS PROPERTIES
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TiML: A Functional Language for Practical Complexity
Analysis with Invariants



A “third way” for Resource Analysis

Example

datatype list α : {N} = Nil of list α {0}
| Cons of α * list α {n} --> list a {n + 1}

fun foldl [α β] {m n : N} (f : α * β -m-> β acc (l : list α {n})

return β using (m + 4) * n =

case l of

[] => acc

| x :: xs => foldl f (f (x, acc)) xs

indexed type system induces the following constraint problem

∀m,n,n′ n′ + 1 = n⇒ m + 4 + (m + 4)n′ 6 (m + 4)n

Peng Wang, Di Wang, and Adam Chlipala.
TiML: A Functional Language for Practical Complexity Analysis with Invariants.
Proc. ACM on Programming Languages, 1(OOPSLA):79:1–79:26, 2017.
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Type Checking and Inference

• evaluated on medium-sized benchmarks; list and tree operations as well as
amortised data structures

• type checking is fast; annotation burden is significant

• type inference allows big-O notation in abstract indices

• eg index sort T_msort represents O(mn log n)

• pattern-based type inference is restrictive

• a number of benchmark example can be analysed fully automatically by various
tools (sorting, functional queues, etc.)

Usability

[...] an undergraduate student with background in SML took just one day to
become fluent in writing and annotating TiML programs.
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Interlude: Automated Amortised Resource Analysis

Example (TiML benchmark example)

empty x = (nil ,nil);

checkF (f,r) = match f with

| nil -> (rev(r),nil)

| (x::xs) -> (f,r);

snoc (queue ,x) = match queue with

| (f,r) -> checkF(f,x::r);

enq n = match n with

| 0 -> empty()

| S n ' -> snoc(enq(n ') ,n ');

main = enq 3;

main = ([0] ,[3 ,2 ,1])

Resource-Aware Programming, Shonan Seminar, Higher-order Complexity Theory and its Applications, Oct. 8, 2019 9



Definition (Annotated Type System for TRSs (selection))

f a function symbol [A1 × · · · × An]
p−→ C ∈ F(f)

x1: A1, . . . , xn: An
p

f(x1, . . . , xn): C

x: A
0

x: A

x1: A1, . . . , xn: An
p0

f(x1, . . . , xn): C Γ1
p1

t1: A1 · · · Γn
pn

tn: An

Γ1, . . . , Γn
p

f(t1, . . . , tn): C

Γ
p

t: C

Γ, x: A
p

t: C

Γ, x: A1, y: A2
p

t[x, y]: C g(A |A1,A2)

Γ, z: A
p

t[z, z]: C

Theorem

let TRS R and subsitution σ be well-typed, suppose Γ
p

t: A and tσ i−→m
R v then

Φ(σ: Γ)− Φ(v: A) + p > m
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Complexity of Interaction



A Logic-Based Computation Model for Distributed
Computing

Definition

• graph-based

• linear logic proof nets

• benign parallel computations

• asynchronous, local inferences

β

α

x1. . .xm

y1 . . . yn

⇒ N(α, β)

y1 . . . yn

xn . . . x1

Remarks
• interaction nets provide a Turing-complete computation model, where distribution

of computation is natively build in

• intermediary representation language, programs need to be compiled to

• resource analysis für sequential/parallel/distributed computation, no tool support
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Implementation of Interaction Nets on a Grid
computation is localised
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Complexity of Interaction

Definition

• the types associated to the ports are refined by
sized types and scheduled types

• runtime/space/productivity analysis

• provides a resource analysis for sequential and
parallel execution

• scheduled types guarantee availability pace of data

• resource analysis works for higher-order, based on
a weak sequential cost model

S. Gimenez, GM.
The Complexity of Interaction.
In Proc. 43th POPL, pages 243-255, 2016
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Thank You for Your Attention

Resource-Aware Programming, Shonan Seminar, Higher-order Complexity Theory and its Applications, Oct. 8, 2019 14


	Logical Foundations and Potential Use Cases
	TiML: A Functional Language for Practical Complexity Analysis with Invariants
	Complexity of Interaction

