

Resource-aware programming ...

or what can we learn from Meltdown and Spectre

Georg Moser

cbr.uibk.ac.at

Remember these Guys ...

¹Editor's Letter, CACM Vol. 61, No. 9

Remember these Guys ...

High-Level Analysis¹

Because Spectre and Meltdown exploit the performance visibility of speculative actions to create information side channels, they extend the functional specification of the architecture to include its detailed performance.

¹Editor's Letter, CACM Vol. 61, No. 9

Remember these Guys ...

High-Level Analysis¹

Because Spectre and Meltdown exploit the performance visibility of speculative actions to create information side channels, they extend the functional specification of the architecture to include its detailed performance.

[M]aking strong assurances of application security on a computing system requires detailed performance information.

¹Editor's Letter, CACM Vol. 61, No. 9

Resource as First-Order Citizens

Example

```
/*
sorting of a list |1| using |compare| as a comparison function
*/
sort :: (1: list A) -> (compare: A -> A -> bool) -> list A
|assuming|
   the number of elements of |1| is bounded by |n|
  the size of the elements of |1| is bounded by |m|
lthenl
   the number of elements of the result is bounded by |n|
   the size of the elements of the result is bounded by |\mathbf{m}|
   the number of calls to |compare| is bounded by |n * log (n)|
   the size of both arguments in all calls to [compare] are
   bounded by [m]
|requiring|
   sequential time |8 * n * log(n) + 4 * n + 3|
   parallel time |6 * log(n) * log(n) + 2|
   storage space |3 * n * m + 2 * m|
```


- Logical Foundations and Potential Use Cases
- TiML: A Functional Language for Practical Complexity Analysis with Invariants
- Complexity of Interaction

Logical Foundations and Potential Use Cases

TiML: A Functional Language for Practial Complexity Analysis with Invariants

- ML-like language with time-complexity annotations in types
- uses indexed types to express size and worst-case runtime complexity
- allows refinment sorts to constrain indices
- focus is on user-defined annotations, efficient type checking and usability
- allows pattern based type inference, eg. incorporating the Master Theorem

TiML: A Functional Language for Practial Complexity Analysis with Invariants

- ML-like language with time-complexity annotations in types
- uses indexed types to express size and worst-case runtime complexity
- allows refinment sorts to constrain indices
- focus is on user-defined annotations, efficient type checking and usability
- allows pattern based type inference, eg. incorporating the Master Theorem

Complexity of Interaction

- runtime and space complexity analysis of interaction net systems
- uses sized types and scheduled types, the latter govern productivity of rules in parallel computation
- INs provide an intermediary representation of ML-like languages
- graph-based computation model generalising linear logic proof nets

Use Cases

High Performance Computing

Cloud Tenant

Cloud Provider

Cloud Tenant

Cloud Provider

Execution Platform

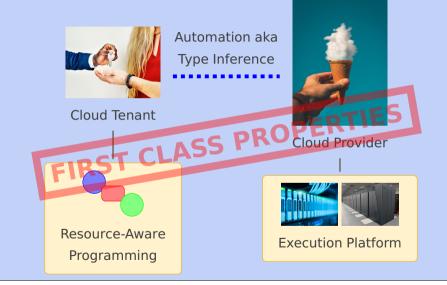
Cloud Tenant

Programming

Automation aka Type Inference

Cloud Provider

Execution Platform



TiML: A Functional Language for Practical Complexity Analysis with Invariants

A "third way" for Resource Analysis

Example

```
datatype list \alpha : {N} = Nil of list \alpha {0}

| Cons of \alpha * list \alpha {n} --> list a {n+1}

fun foldl [\alpha \beta] {m n : N} (f : \alpha * \beta -m-> \beta acc (l : list \alpha {n})

return \beta using (m+4) * n =

case l of

[] => acc

| x :: xs => foldl f (f (x, acc)) xs
```

indexed type system induces the following constraint problem

$$orall m,n,n' \ n'+1=n \Rightarrow m+4+(m+4)n' \leqslant (m+4)n$$

Peng Wang, Di Wang, and Adam Chlipala.

TiML: A Functional Language for Practical Complexity Analysis with Invariants. *Proc. ACM on Programming Languages*, 1(OOPSLA):79:1–79:26, 2017.

- evaluated on medium-sized benchmarks; list and tree operations as well as amortised data structures
- type checking is fast; annotation burden is significant

- evaluated on medium-sized benchmarks; list and tree operations as well as amortised data structures
- type checking is fast; annotation burden is significant
- type inference allows big-O notation in abstract indices
- eg index sort T_msort represents $O(mn \log n)$

- evaluated on medium-sized benchmarks; list and tree operations as well as amortised data structures
- type checking is fast; annotation burden is significant
- type inference allows big-O notation in abstract indices
- eg index sort T_msort represents O(mn log n)
- pattern-based type inference is restrictive
- a number of benchmark example can be analysed fully automatically by various tools (sorting, functional queues, etc.)

- evaluated on medium-sized benchmarks; list and tree operations as well as amortised data structures
- type checking is fast; annotation burden is significant
- type inference allows big-O notation in abstract indices
- eg index sort T_msort represents O(mn log n)
- pattern-based type inference is restrictive
- a number of benchmark example can be analysed fully automatically by various tools (sorting, functional queues, etc.)

Usability

[...] an undergraduate student with background in SML took just one day to become fluent in writing and annotating TiML programs.

Interlude: Automated Amortised Resource Analysis

Example (TiML benchmark example)

```
empty x = (nil, nil);
checkF(f,r) = match f with
                 | nil -> (rev(r), nil)
                 | (x::xs) -> (f,r):
snoc (queue,x) = match queue with
                 | (f,r) -> checkF(f,x::r);
eng n = match n with
                 | 0 -> empty()
                 | S n' -> snoc(enq(n'), n');
main = enq 3;
main = ([0], [3, 2, 1])
```


$$\begin{array}{c} f \text{ a function symbol } & [A_1 \times \cdots \times A_n] \xrightarrow{p} C \in \mathcal{F}(f) \\ \hline \\ & x_1 : A_1, \dots, x_n : A_n \left| \xrightarrow{p} f(x_1, \dots, x_n) : C \right. \end{array}$$

$$\frac{f \text{ a function symbol } [A_1 \times \cdots \times A_n] \xrightarrow{p} C \in \mathcal{F}(f)}{x_1 : A_1, \dots, x_n : A_n \xrightarrow{p} f(x_1, \dots, x_n) : C}$$
$$\frac{x_1 : A_1, \dots, x_n : A_n \xrightarrow{p_0} f(x_1, \dots, x_n) : C \quad \Gamma_1 \xrightarrow{p_1} t_1 : A_1 \cdots \prod_n \xrightarrow{p_n} t_n : A_n}{\Gamma_1, \dots, \Gamma_n \xrightarrow{p} f(t_1, \dots, t_n) : C}$$

$$\frac{f \text{ a function symbol } [A_1 \times \dots \times A_n] \xrightarrow{p} C \in \mathcal{F}(f)}{x_1 : A_1, \dots, x_n : A_n \stackrel{p}{\models} f(x_1, \dots, x_n) : C} \qquad \frac{x : A \stackrel{p}{\models} x : A}{x : A_1, \dots, x_n : A_n \stackrel{p}{\models} f(x_1, \dots, x_n) : C} \qquad \frac{x : A \stackrel{p}{\models} x : A}{\Gamma_1, \dots, \Gamma_n \stackrel{p}{\models} f(t_1, \dots, t_n) : C}$$

$$\frac{\Gamma \stackrel{p}{\models} t : C}{\Gamma, x : A \stackrel{p}{\models} t : C}$$

$$\frac{f \text{ a function symbol } [A_1 \times \dots \times A_n] \xrightarrow{p} C \in \mathcal{F}(f)}{x_1 : A_1, \dots, x_n : A_n \stackrel{p}{\mapsto} f(x_1, \dots, x_n) : C} \qquad \frac{x : A \stackrel{0}{\mapsto} x : A}{x : A_1, \dots, x_n : A_n \stackrel{p_0}{\mapsto} f(x_1, \dots, x_n) : C} \qquad \frac{x : A \stackrel{p_0}{\mapsto} x : A}{x_1 : A_1, \dots, x_n : A_n \stackrel{p_0}{\mapsto} f(x_1, \dots, x_n) : C} \qquad \frac{x_1 : A_1 \cdots \prod_n \stackrel{p_n}{\mapsto} t_n : A_n}{\Gamma_1, \dots, \Gamma_n \stackrel{p}{\mapsto} f(t_1, \dots, t_n) : C}$$

$$\frac{\Gamma \stackrel{p}{\mapsto} t : C}{\Gamma, x : A \stackrel{p}{\mapsto} t : C} \qquad \frac{\Gamma, x : A_1, y : A_2 \stackrel{p}{\mapsto} t[x, y] : C \quad \Upsilon(A \mid A_1, A_2)}{\Gamma, z : A \stackrel{p}{\mapsto} t[z, z] : C}$$

$$\frac{f \text{ a function symbol } [A_1 \times \dots \times A_n] \xrightarrow{p} C \in \mathcal{F}(f)}{x_1 : A_1, \dots, x_n : A_n \xrightarrow{p} f(x_1, \dots, x_n) : C} \qquad \frac{x : A \xrightarrow{p} C \in \mathcal{F}(f)}{x_1 : A_1, \dots, x_n : A_n \xrightarrow{p} f(x_1, \dots, x_n) : C} \qquad \frac{x : A \xrightarrow{p} C \in \mathcal{F}(f)}{x_1 : A_1, \dots, x_n : A_n \xrightarrow{p} f(x_1, \dots, x_n) : C} \qquad \frac{x : A \xrightarrow{p} C \in \mathcal{F}(f)}{x_1 : A_1, \dots, x_n : A_n \xrightarrow{p} f(x_1, \dots, x_n) : C} \qquad \frac{x : A \xrightarrow{p} C \in \mathcal{F}(f)}{x_1 : A_1, \dots, x_n : A_n \xrightarrow{p} f(x_1, \dots, x_n) : C} \qquad \frac{x : A \xrightarrow{p} f(x_1, \dots, x_n) : C}{x_1 : A_1, \dots, x_n : A_n \xrightarrow{p} f(x_1, \dots, x_n) : C} \qquad \frac{x : A \xrightarrow{p} f(x_1, \dots, x_n) : C}{x_1 : A_1, \dots, x_n : A_n \xrightarrow{p} f(x_1, \dots, x_n) : C} \qquad \frac{x : A \xrightarrow{p} f(x_1, \dots, x_n) : C}{x_1 : A_1, \dots, x_n : A_n \xrightarrow{p} f(x_1, \dots, x_n) : C} \qquad \frac{x : A \xrightarrow{p} f(x_1, \dots, x_n) : C}{x_1 : A_1, \dots, x_n : A_n \xrightarrow{p} f(x_1, \dots, x_n) : C} \qquad \frac{x : A \xrightarrow{p} f(x_1, \dots, x_n) : C}{x_1 : A_1, \dots, x_n : A_n \xrightarrow{p} f(x_1, \dots, x_n) : C} \qquad \frac{x : A \xrightarrow{p} f(x_1, \dots, x_n) : C}{x_1 : A_1, \dots, A_n \xrightarrow{p} f(x_1, \dots, x_n) : C} \qquad \frac{x : A \xrightarrow{p} f(x_1, \dots, x_n) : C}{x_1 : A_1, \dots, A_n \xrightarrow{p} f(x_1, \dots, x_n) : C} \qquad \frac{x : A \xrightarrow{p} f(x_1, \dots, x_n) : C}{x_1 : A_1, \dots, A_n \xrightarrow{p} f(x_1, \dots, x_n) : C} \qquad \frac{x : A \xrightarrow{p} f(x_1, \dots, x_n) : C}{x_1 : A \xrightarrow{p} f(x_1, \dots, x_n) : C} \qquad \frac{x : A \xrightarrow{p} f(x_1, \dots, x_n) : C}{x_1 : A \xrightarrow{p} f(x_1, \dots, x_n) : C} \qquad \frac{x : A \xrightarrow{p} f(x_1, \dots, x_n) : C}{x_1 : A \xrightarrow{p} f(x_1, \dots, x_n) : C} \qquad \frac{x : A \xrightarrow{p} f(x_1, \dots, x_n) : C}{x_1 : A \xrightarrow{p} f(x_1, \dots, x_n) : C} \qquad \frac{x : A \xrightarrow{p} f(x_1, \dots, x_n) : C}{x_1 : A \xrightarrow{p} f(x_1, \dots, x_n) : C} \qquad \frac{x : A \xrightarrow{p} f(x_1, \dots, x_n) : C}{x_1 : A \xrightarrow{p} f(x_1, \dots, x_n) : C} \qquad \frac{x : A \xrightarrow{p} f(x_1, \dots, x_n) : C}{x_1 : A \xrightarrow{p} f(x_1, \dots, x_n) : C} \qquad \frac{x : A \xrightarrow{p} f(x_1, \dots, x_n) : C}{x_1 : A \xrightarrow{p} f(x_1, \dots, x_n) : C} \qquad \frac{x : A \xrightarrow{p} f(x_1, \dots, x_n) : C}{x_1 : A \xrightarrow{p} f(x_1, \dots, x_n) : C} \qquad \frac{x : A \xrightarrow{p} f(x_1, \dots, x_n) : C}{x_1 : A \xrightarrow{p} f(x_1, \dots, x_n) : C} \qquad \frac{x : A \xrightarrow{p} f(x_1, \dots, x_n) : C}{x_1 : A \xrightarrow{p} f(x_1, \dots, x_n) : C} \qquad \frac{x : A \xrightarrow{p} f(x_1, \dots, x_n) : C}{x_1 : A \xrightarrow{p} f(x_1, \dots, x_n) : C} \qquad \frac{x : A \xrightarrow{p} f(x_1, \dots, x_n) : C}{x_1 : A \xrightarrow{p} f(x_1, \dots, x_n) : C} \qquad \frac{x : A \xrightarrow{p} f(x_1, \dots, x_n) : C}{x_1 : A \xrightarrow{p} f(x_1, \dots, x_n) : C} \qquad \frac{x : A \xrightarrow{p} f(x_1$$

Theorem

let TRS \mathcal{R} and subsitution σ be well-typed, suppose $\Gamma \stackrel{p}{\models} t$: A and $t\sigma \stackrel{i}{\rightarrow}_{\mathcal{R}}^{m} v$ then

 $\Phi(\sigma: \Gamma) - \Phi(v: A) + p \ge m$

$$\frac{f \text{ a function symbol } [A_1 \times \dots \times A_n] \xrightarrow{p} C \in \mathcal{F}(f)}{x_1 : A_1, \dots, x_n : A_n \xrightarrow{p} f(x_1, \dots, x_n) : C} \qquad \frac{x : A \xrightarrow{p} x : A}{x : A_1, \dots, x_n : A_n \xrightarrow{p} f(x_1, \dots, x_n) : C} \qquad \frac{x : A \xrightarrow{p} x : A}{x_1 : A_1, \dots, x_n : A_n \xrightarrow{p_0} f(x_1, \dots, x_n) : C} \qquad \frac{x_1 : A_1, \dots, x_n : A_n \xrightarrow{p_0} f(x_1, \dots, x_n) : C}{\Gamma_1, \dots, \Gamma_n \xrightarrow{p} f(t_1, \dots, t_n) : C}$$

$$\frac{\Gamma \xrightarrow{p} t : C}{\Gamma, x : A \xrightarrow{p} t : C} \qquad \frac{\Gamma, x : A_1, y : A_2 \xrightarrow{p} t[x, y] : C}{\Gamma, z : A \xrightarrow{p} t[z, z] : C}$$

Theorem

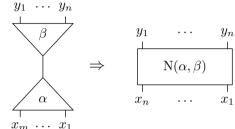
let TRS \mathcal{R} and subsitution σ be well-typed, suppose $\Gamma \stackrel{p}{\models} t$: A and $t\sigma \stackrel{i}{\rightarrow}_{\mathcal{R}}^{m} v$ then

 $\Phi(\sigma: \Gamma) - \Phi(v: A) + p \ge m$

Complexity of Interaction

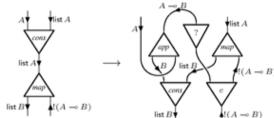
Definition

- graph-based
- linear logic proof nets
- benign parallel computations
- asynchronous, local inferences



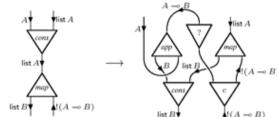
Definition

- graph-based
- linear logic proof nets
- benign parallel computations
- asynchronous, local inferences



Definition

- graph-based
- linear logic proof nets
- benign parallel computations
- asynchronous, local inferences



Remarks

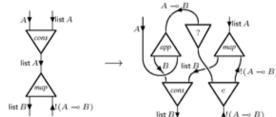
niversität

innsbruck

- interaction nets provide a Turing-complete computation model, where distribution of computation is natively build in
- intermediary representation language, programs need to be compiled to

Definition

- graph-based
- linear logic proof nets
- benign parallel computations
- asynchronous, local inferences



Remarks

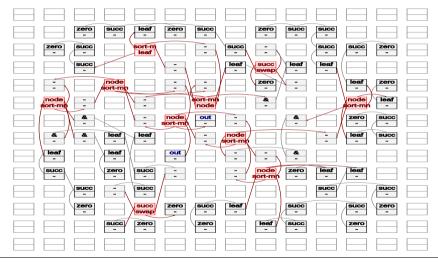
niversität

nsbruck

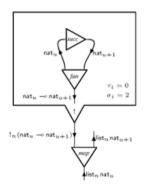
- interaction nets provide a Turing-complete computation model, where distribution of computation is natively build in
- intermediary representation language, programs need to be compiled to
- resource analysis für sequential/parallel/distributed computation, no tool support

Implementation of Interaction Nets on a Grid

computation is localised



Complexity of Interaction



Definition

- the types associated to the ports are refined by sized types and scheduled types
- runtime/space/productivity analysis
- provides a resource analysis for sequential and parallel execution
- scheduled types guarantee availability pace of data
- resource analysis works for higher-order, based on a weak sequential cost model

universität

nsbruck

S. Gimenez, GM. The Complexity of Interaction. In *Proc. 43th POPL*, pages 243-255, 2016

Thank You for Your Attention

