
Bachelor Thesis

Learning Efficient Programs

Natalie Höpperger
natalie.hoepperger@student.uibk.ac.at

11 March 2021

Supervisor: Univ.-Prof. Dr. Georg Moser

mailto:natalie.hoepperger@student.uibk.ac.at

Eidesstattliche Erklärung

Ich erkläre hiermit an Eides statt durch meine eigenhändige Unterschrift, dass ich die
vorliegende Arbeit selbständig verfasst und keine anderen als die angegebenen Quellen
und Hilfsmittel verwendet habe. Alle Stellen, die wörtlich oder inhaltlich den angegebenen
Quellen entnommen wurden, sind als solche kenntlich gemacht.
Ich erkläre mich mit der Archivierung der vorliegenden Bachelorarbeit einverstanden.

Datum Unterschrift

Abstract

The aim of inductive programming (IP) – also called program synthesis – is to learn
programs from incomplete specifications. There exists a number of IP systems that are
capable of synthesizing code sequences by using different approaches. However, most of
them do not consider distinguishing between the efficiency of the synthesized algorithms.
In this thesis efficiency stands for the runtime complexity of a program. This thesis
investigates the IP tools FOIL, Metaopt, MagicHaskeller and Hoogle+, their underlying
algorithms as well as their implementations. Furthermore those systems are tested by
giving them input-output examples for ten simple programming tasks and analysing the
output in terms of correctness and efficiency. It has been shown that three of the four
systems are not even able to solve half of the defined tasks without predefining types,
functions, relations, meta-rules or predicates. Only MagicHaskeller was able to find a
satisfactory number of correct code sequences by using library functions as basis for the
synthesis procedure.

Contents

1 Introduction 1
1.1 Aim and Methodological Approach . 2
1.2 Contributions . 3
1.3 Overview . 4

2 Inductive Programming 5
2.1 Inductive Logic Programming . 5
2.2 Inductive Functional Programming . 7

3 Background and Related Work 9
3.1 Foundation of ILP . 9
3.2 Pioneer Work in IFP . 11
3.3 Surveys of IP Systems . 12

4 Applications of Program Synthesis 14
4.1 Data Wrangling . 14
4.2 Automated Program Repair . 14
4.3 Code Suggestions . 14
4.4 Superoptimization . 15
4.5 Teaching Tool for Programming Novices . 15

5 Tools, Frameworks and Systems 16
5.1 MagicHaskeller . 16

5.1.1 The Algorithm . 17
5.1.2 Implementation – Web Interface . 20
5.1.3 Implementation – Haskell Package 21

5.2 FOIL . 23
5.2.1 The Algorithm . 23
5.2.2 Implementation . 26

5.3 Metaopt . 28
5.3.1 The Algorithm . 29
5.3.2 Implementation . 30

5.4 Hoogle+ . 31
5.4.1 The Algorithm . 32
5.4.2 Implementation . 35

vi

6 Benchmark and Comparisons 37
6.1 Programming Tasks . 37

6.1.1 Sample Solutions . 37
6.2 Results . 40

6.2.1 MagicHaskeller . 41
6.2.2 FOIL . 41
6.2.3 Metaopt . 44
6.2.4 Hoogle+ . 46

7 Conclusion 48

Bibliography 50

vii

1 Introduction

Automatically finding a code sequence or program just by telling the computer the desired
output is surely a fundamental problem in computer science. And indeed, there is an
entire research area on this topic. Program synthesis, as the name implies, has the goal
to automatically synthesize programs “that satisfy user intent expressed in some form of
constraints”1. This research area combines a lot of different communities and fields of
computer science such as machine learning and artificial intelligence as well as various
programming languages and paradigms.

One of the most prominent examples of program synthesis is a feature of Microsoft
Excel called Flash Fill [6] that was first introduced in 2013’s version of Excel. Flash Fill
allows the user to automatically apply text manipulation on data after simply giving
one input-output example. For example, the input might be one column where each row
contains the full name of a person (first name and last name). The user now wants to
have two additional columns where the name is split into first and last name. Normally
the user would have to go through each row and manually split the names. By using the
Flash Fill technology the user only has to give one example in the first row and then
apply the feature to all remaining rows and thus gets the desired and split data. This
fully automatic text manipulation is done via program synthesis. For each task millions
of small programs – each consisting of 10 to 20 lines of code – are generated and then
the synthesizer finds the one which is best-suited to complete the desired task.

Program synthesis is normally divided into two subcategories: Deductive program
synthesis and inductive program synthesis. While deductive approaches are based on a
complete formal specification, inductive approaches – also known as inductive programming
– generate programs from incomplete information (e.g. input-output examples, constraints,
traces, etc.). Deductive synthesis – due to the needed complete specification – is extremely
complicated and not practicable, which is why the inductive approach seems to be more
successful in the long term.

A lot of research has been done in the field of program synthesis over the past years.
Nonetheless, the efficiency of the synthesized programs is still a quite rarely covered topic.
Besides a few exceptions such as Metaopt, an inductive logic programming (ILP) system
introduced by Muggleton and Cropper in 2019 [4], none of the existing program synthesis
tools is able to distinguish between the efficiency of the generated program, much less
synthesize an optimal program. This is why a goal of this bachelor thesis is to examine
the efficiency of such synthesized programs.

In this thesis an efficient or optimal program is a code sequence with a minimal time
complexity and therefore a low runtime when executing the program. Thus the optimal

1Gulwani et al. 2017 [9], 3

1

1 Introduction

program is a code sequence where the complexity is as small as possible. For example,
quick sort is considered to be one of the best sorting algorithms with a time complexity of
O(n ⋅ logn) (average case). If a system is then able to synthesize quick sort, this system
is able to synthesize an optimal program for sorting.

1.1 Aim and Methodological Approach

The goal of this thesis is to give an overview of the existing research in the field of
program synthesis, with a focus on comparing different inductive approaches and their
corresponding tools. In addition to this, the efficiency of the synthesized programs will
be considered. The research question consists of the following:

What is the state-of-the-art in the field of inductive programming when it
comes to complex, efficient and recursive programs? Which tools for program
synthesis based on an inductive approach do exist? How efficient are the
emerging programs of these tools?

For this thesis an overview of selected methods and tools is done through a literature
study. Additionally the existing tools will first be theoretically compared through
corresponding documentations and papers. In the course of this analysis a comparison
between the characteristics of such tools, for example, the underlying programming
paradigm or the programming language used by the developers, will be made. If possible,
the tools will also be compared in an experimental way to examine the emerging programs.
As already mentioned, the efficiency of these programs has priority and the term efficiency
stands for the time complexity. Also the efficiency of the learning phase is considered,
but not discussed in detail.

For this thesis the following four program synthesis tools were selected:

• MagicHaskeller (Katayama 2005) [16],

• FOIL (Quinlan 1990) [37],

• the ILP system Metaopt (Cropper and Muggleton 2019) [4],

• and a recently introduced system called Hoogle+ (James et al. 2020) [14].

These four tools will be compared by the already mentioned aspects and criteria. The
mentioned tools were selected based on different aspects. All systems emerge from open
source projects and can be accessed via a web interface (MagicHaskeller and Hoogle+)
or by downloading the source code (Metaopt and FOIL). Furthermore the systems were
selected by their combination of inductive logic programming (Section 2.1) and inductive
functional programming (Section 2.2) approaches. In this thesis older systems such as
FOIL, MagicHaskeller that is somewhere in the middle and systems that were released
quite recently such as Metaopt and Hoogle+ are compared.

2

1.2 Contributions

1.2 Contributions

The results were rather surprising as systems that initially seemed quite promising could
not live up to expectations (see Table 1.1, further descriptions can be found in Chapter 6).
For example, the recently introduced tool Hoogle+ was not able to synthesize a single
task except for the ones described in the corresponding paper. But on the other hand
MagicHaskeller – the sole purpose of which is to help programming novices to learn how
to program in Haskell – is able to synthesize nearly all kind of short code sequences
for the defined tasks. FOIL was for sure a powerful tool when it was introduced 30
years ago but is not able to keep up with recent improvements in the field of inductive
programming. The usage as well as the necessary preparation of input files (including
constants, types and relations) is rather complex and time-consuming compared to the
other tools. Further the emerging Horn clauses have to be translated into executable
programs (e.g. Prolog code). Metaopt is able to synthesize efficient code sequences if the
required meta-rules and predicates are predefined. Further the structure of the desired
algorithm must be known in advance to use FOIL or Metaopt for inductive programming.

Problem / System MagicHaskeller FOIL Metaopt Hoogle+
Sort 3 3 – –
Split names 3 – – –
Get initials 3 – 3 –
Duplicate elements 3 ☇ – –
Find duplicate ☇ – 3 –
Remove duplicate 3 – – 3

Remove element 3 – – –
Reverse 3 3 ☇ –
Reverse & append 3 ☇ – –
Count elements 3 ☇ – –

Table 1.1: Experimental results for all four systems:
3: A correct output was produced.
☇: An incorrect output was produced.
–: No output was produced.

It must be said that some of the questions and goals described in Section 1.1 can not
be answered at this point in time. This is due to the fact that most systems are not
even able to synthesize simple and correct programs and much less complex, efficient and
recursive programs.

As the know information (the evidence) is per se unsound and incomplete no inductive
programming system is able to prove if a synthesized program is correct. That is why
the correctness of a synthesized program must be checked by the user.

3

1 Introduction

1.3 Overview
This thesis is structured as follows:

1. An introduction to inductive programming is given by explaining the difference
between inductive logic programming (ILP) and inductive functional programming
(IFP) in Chapter 2.

2. Background and related work is discussed in Chapter 3.

3. Common real-life applications of program synthesis are presented in Chapter 4.

4. Chapter 5 gives an overview of the theoretical background and implementation of
the selected tools.

5. Experimental results are presented and compared in Chapter 6.

The supplementary materials used for this thesis such as data and code files along
with a short README file can be found on GitLab2.

2https://git.uibk.ac.at/csas8322/learning-efficient-programs-bachelor-thesis

4

https://git.uibk.ac.at/csas8322/learning-efficient-programs-bachelor-thesis

2 Inductive Programming

In this chapter a short introduction to inductive programming and its subcategories
inductive logic programming (ILP) and inductive functional programming (IFP) is given.

In computer science and especially in programming a deductive approach, which means
having a general problem as starting point and finding its solution in order to solve a
specific problem, is predominant [25]. On the contrary inductive methods try to solve a
more general problem by first finding the solution to a specific problem, which is also
called inductive reasoning. The goal is to find general patterns in data and then to
produce a generalization of the given incomplete specification (e.g. examples).

In inductive programming (IP) the known information – also called the evidence –
is per se unsound and incomplete which means that no IP system is able to prove the
correctness of a synthesized program or algorithm [5, 25]. That being the case the
obtained specifications are only hypotheses.

Inductive programming is a type of machine learning, but also goes beyond its focus
on classification and regularities through restricted models such as decision trees and
neural networks which are typical for machine learning approaches. Instead inductive
programming covers the learning of general programs that also include more powerful
programming concepts such as recursion and loops [25]. Furthermore IP can be seen
as part of program synthesis. Other approaches to program synthesis are deductive or
transformational approaches [42].

2.1 Inductive Logic Programming

Inductive logic programming (ILP) is based on (counter)-examples, more precisely positive
and negative examples (the evidence) and uses first-order logic (e.g. Horn clauses) to
represent data, examples and hypotheses [25]. It is an intersection of logic programming
and inductive learning and uses machine learning as well as logic programming techniques
[31].

ILP relies on inductive inference which means that logical conclusions are derived
from known premises (logical consequence or entailment). For ILP systems only a few
examples are needed to generalise whereas other techniques such as machine learning
are data hungry and need large amounts of examples. Furthermore data is represented
as logic programs which makes it possible to learn with complex relational information
and to further integrate expert knowledge [2]. ILP systems are able to synthesize and
generalise programs and algorithms that go beyond the initial examples. For instance,
ILP applications for sorting and transforming strings can handle different input sizes and
types [2].

5

2 Inductive Programming

To sum up, inductive logic programming is about selecting a hypothesis H which is an
element of a set of possible hypotheses (definite programs) such that H ∪B (where B
is the consistent background knowledge) with respect to positive and negative evidence
(E+ and E−) [25]. Out of the systems considered in this thesis FOIL [37] and Metaopt
[4] use such an approach.

FOIL, an inductive logic programming system developed by John Ross Quinlan in
1990, can be used to first find an explicit representation of the target relation in the form
of Horn clauses and then a more generalized functional representation by applying a
information-based heuristic search [37]. As already mentioned the system needs positive
and negative examples to do so. FOIL’s approach is further described in Section 5.2.

Metaopt developed by Stephen Muggleton and Andrew Cropper in 2019 is another ILP
system that extends their previous meta-interpretive learning (MIL) system MetagolO.
MIL is a form of inductive logic programming that also supports the learning of recursive
algorithms and programs as well as the use of predicate invention for problem decompo-
sition [3]. For MIL systems an adapted Prolog meta-interpreter is used to prove a set of
goals which is done by “repeatedly fetching higher-order meta-rules whose heads unify
with a given goal”1. As a result meta-substitutions can be obtained and applied onto
their corresponding meta-rules whereby a hypothesis is formed. Further details on the
implementation of Metaopt’s approach can be found in Section 5.3.

FOIL for example, is able to learn an algorithm for quick sort by defining the following
relations with a sufficient number of examples:

• part(N,Xs,Ls,Rs): Takes an element N (the pivot), a list Xs and returns two lists
(Ls, Rs), where all elements of Xs that are less than or equal to N are put into Ls
and the rest is put into Rs. E.g. part(1,[1,2]),Ls,Rs) returns Ls = [1], Rs = [2].

• append(Xs, Ys, Zs): Takes two lists Xs and Y s and returns a list Zs, that appends
Xs to Y s. E.g. append([1],[2],Zs) returns Zs = [1,2].

• components(Xs,N,Ys): Takes a list Xs and returns the head N and the tail of the
list Y s. E.g. components([1,2],N,Ys) returns N = 1, Y s = [2].

The sequence synthesized by FOIL can be found in Listing 2.1 and the corresponding
Prolog code in Listing 2.2. First head and tail of the given list A are saved in C and D
by calling components. Then D is divided into E and F around the pivot C by calling
part and sorted by recursively calling qsort for the divided parts. The sorted lists are
stored in G and H and eventually linked with the pivot to the resulting list B.

1 qsort (A,A) :- null(A)
2 qsort (A,B) :- components (A,C,D), part(C,D,E,F), qsort (E,G), qsort (F,H),
3 append (G,I,B), components (I,C,H) �

Listing 2.1: An algorithm for quick sort found by FOIL.

1Cropper & Muggleton 2015 [3], p. 3425

6

2.2 Inductive Functional Programming

1 qsort ([],[]).
2 qsort (A,B) :- components (A,C,D), part(C,D,E,F), qsort (E,G), qsort (F,H),
3 append (G,I,B), components (I,C,H).
4
5 components ([X|Xs],X,Xs).
6
7 part(Y,[],[],[]).
8 part(Y,[X|Xs],[X|Ls],Rs) :- X =< Y, part(Y,Xs,Ls,Rs).
9 part(Y,[X|Xs],Ls,[X|Rs]) :- X > Y, part(Y,Xs,Ls,Rs).

10
11 append ([],Ys,Ys).
12 append ([X|Xs],Ys,[X|Zs]) :- append (Xs,Ys,Zs). �

Listing 2.2: Corresponding Prolog code to the algorithm found by FOIL.

2.2 Inductive Functional Programming
In inductive functional programming (IFP) input-output examples are first transformed
into constructive expressions such as predicates and traces, where each predicate registers
the structure of an input example and each trace calculates the associated output for
a given input example [41]. Then these pairs of predicates and traces are searched for
regularities which then are used for finding generalizations.

There are different approaches to IFP: an analytical and a generate-and-test approach.
The analytical approach uses pattern matching while the generate-and-test approach
generates as a first step programs and algorithms which then are reduced to those who
satisfy the given condition [21]. Analytical approaches tend to be more efficient and
therefore faster, while generate-and-test approaches tend to be slower but the given
specification is not limited by the number and complexity of the I/O-examples.

MagicHaskeller [16] is an IFP system that uses a generate-and-test approach that is
based on systematic search. First the systems generates all possible and type-correct
Haskell expressions which then are tested by a given test function. Due to the fact that
MagicHaskeller’s program generator starts with the smallest expression possible and
then tests if that expression suits the given specification, a program of minimal size is
obtained first [21].

Another prominent example for inductive functional programming is the recently
introduced system Hoogle+ [14], which is able to find Haskell expressions when given a
few input-output examples. Further the tool is able to synthesize a suitable type from
these examples. The system first infers a type, which is needed to synthesize candidate
programs by using a type-directed component-based synthesis approach. In a next step
the emerging programs are sorted out and eventually test cases are generated to show
the functionality of the synthesized code sequence.

MagicHaskeller, for example, is able to find a Haskell library function for sorting (see
Listing 2.4) by giving one simple input-output example as shown in Listing 2.3. The
function sort is implemented as merge sort and is part of the Data.List module2.

2https://hackage.haskell.org/package/base-4.14.1.0/docs/src/Data.OldList.html#sort

7

https://hackage.haskell.org/package/base-4.14.1.0/docs/src/Data.OldList.html#sort

2 Inductive Programming

1 f [5 ,2 ,1 ,3 ,4] == [1 ,2 ,3 ,4 ,5] �
Listing 2.3: An input-output example for sorting given to MagicHaskeller.

1 f = sort �
Listing 2.4: A function for sorting found by MagicHaskeller.

8

3 Background and Related Work

In this chapter an overview of existing research literature and the current state of research
is given. First the origins of inductive logic programming and inductive functional
programming are discussed. As Muggleton is considered to have established this field of
research, ILP – or rather inductive inference – is explained as proposed by Muggleton
et al. [31] by giving the process of synthesizing the sorting algorithm quick sort as an
example. IFP is explained by presenting the algorithm of one of the first inductive
functional programming systems THESYS [45], which was introduced by Summers in
1977.

The notations for clauses, expressions etc. used in the following sections are oriented
towards those used by the authors in the corresponding papers.

3.1 Foundation of ILP

The term inductive logic programming was first used by Stephen Muggleton in 1991 to
define a combination of inductive learning (or machine learning in general) and logic
programming [28]. In the same paper he further describes theoretical foundations of ILP
such as the general concept that hypotheses are formed by searching a consistent set of
examples (Muggleton also called them observations) and consistent background knowledge
[28]. Hypotheses (H) and background knowledge (B) must further entail the examples
or observations (O) as shown in (3.1.1).

H ∧B ⊢ O (3.1.1)

Another paper about theories and methods of inductive logic programming was published
by Stephen Muggleton and Luc de Raedt in 1993, where three different examples about
inductive inference (family relationships, Tweety and sorting) were used to describe how
ILP works [31].

The following example1 shows how quick sort is learned by ILP systems. The notation
used to describe the algorithm is the notation used in logic programming which is based
on formal logic. The definitions in (3.1.2) are used as background knowledge [31] and were
already described in Section 2.1 for FOIL, which uses the same relations as background
knowledge.

1cf. Muggleton & De Raedt 1994 [31], p. 633

9

3 Background and Related Work

B =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

part(X, [], [], [])←Ð

part(X, [Y ∣T], [Y ∣S1], S2)←Ð Y =<X, partition(X,T,S1, S2)
part(X, [Y ∣T], S1, [Y ∣S2])←Ð Y >X, part(X,T,S1, S2)
app([], L,L)←Ð

app([X ∣T], L, [X ∣R])←Ð app(T,L,R)

(3.1.2)

The program also receives a set of positive (E+) and negative (E−) examples (the
evidence) as shown in (3.1.3) and (3.1.4).

E+
=

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

qsort([], [])←Ð

qsort([0], [0])←Ð
qsort([1,0], [0,1])←Ð
...

(3.1.3)

E−
=

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

←Ð qsort([1,0], [1,0])
←Ð qsort([0], [])
...

(3.1.4)

The hypothesis shown in (3.1.5) should be generated by the algorithm if a sufficient
number of positive and negative examples is given. For an empty list qsort returns the
empty list. If the list is not empty, a divide-and-conquer approach is used, where first the
tail of the list T is partitioned around the pivot element X (the head of the list) into two
lists L1 and L2. After that qsort is recursively called for L1 and L2 and the resulting
lists are stored into S1 and S2. As a last step S1 is appended to the pivot element X
and S2 ([X ∣S2]) and the resulting list S is the sorted list.

H =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

qsort([], [])←Ð

qsort([X ∣T], S)←Ð part(X,T,L1, L2),
qsort(L1, S1),
qsort(L2, S2),
app(S1, [X ∣S2], S)

(3.1.5)

The ILP systems GOLEM [30] as well as FOIL [37] are able to synthesize the described
algorithm for quick sort from only a few examples.

Furthermore Muggleton has implemented a number of various ILP systems such as
GOLEM (1990) [30], PROGOL (1995) [29] and Metagol [32] which is under active
development since 2014 and recently he has introduced Metaopt (2019) [4], a system that
is capable of synthesizing efficient programs. Metaopt and its implementation will be
discussed in Section 5.3.

10

3.2 Pioneer Work in IFP

3.2 Pioneer Work in IFP
In 1977 Phillip D. Summers introduced a program synthesis system called THESYS
[45], which is capable of deriving recursive LISP programs from examples without the
need of performing a search for candidate programs [24]. The basic idea of the system’s
algorithm is to infer traces from examples and then fold these traces into a recursive
program by using a trace-based programming method [5].

Definition 3.1 (McCarthy Conditional Expression [27]). A McCarthy-Conditional has
the form (p1 Ð→ e1, ..., pn Ð→ en), where p are propositional expressions and e are arbitrary
expressions. It can be read as “If p then e”.

The system is based on two steps. First a trace as shown in (3.2.1) is formed. A
trace consists of McCarthy conditional expressions (see Definition 3.1) where pi(x) is a
predicate and fi(x) a program fragment.

F (x) = (p1(x)Ð→ f1(x), ..., pk−1(x)Ð→ fk−1(x), T Ð→ fk(x)) (3.2.1)
In the second step recurrences between those predicates and program fragments are

found and a recursive program is formed that generalizes those recurrent relations [25].
To construct a trace the following primitive LISP functions are used:

• atom: Returns False if an object is a list.
• car: Returns the first element of a list.
• cdr: Returns the list without the first element.
• cons: Combines two expressions to a list.
• nil: Represents the empty list.

The following example is used by Kitzelmann2 to demonstrate the algorithm described
above. The synthesized program should be able to compute the the initial sequence of a
list. Input-output examples shown in (3.2.2) are used as input.

⟨(A), ()⟩, ⟨(A,B), (A)⟩, ⟨(A,B,C), (A,B)⟩, ⟨(A,B,C,D), (A,B,C)⟩ (3.2.2)

First the trace (see (3.2.3)) consisting of predicates (atoms) and program fragments
can be derived from these examples. cd...dr stands for multiple calls of the function cdr.

F (x) = (atom(cdr(x))Ð→ nil

atom(cddr(x))Ð→ cons(car(x), nil) (3.2.3)
atom(cdddr(x))Ð→ cons(car(x), cons(cadr(x), nil))

T Ð→ cons(car(x), cons(cadr(x), cons(caddr(x), nil))))

Then the recurrences shown in (3.2.4) and (3.2.5) can be identified.

pi+1(x) = pi(cdr(x)) for i = 1,2 (3.2.4)
2cf. Kitzelmann 2008 [24], p. 89f.

11

3 Background and Related Work

fi+1(x) = cons(car(x), fi(cdr(x))) for i = 1,2,3 (3.2.5)

As a last step the (recursive) LISP program as shown in (3.2.6) is synthesized by
inductively generalise the recurrences in (3.2.4) and (3.2.5).

F (x) = (atom(cdr(x))Ð→ nil

T Ð→ F ′
(x))

(3.2.6)
F ′

(x) = (atom(cddr(x))Ð→ cons(car(x), nil)

T Ð→ cons(car(x), F ′
(cdr(x)))

3.3 Surveys of IP Systems
Although there exists a lot of research in the field of program synthesis, not much effort
has been put into comparing existing tools.

In 2009 different inductive programming tools were compared by Hofmann et al.
[13]. In this survey seven systems were analyzed: ADATE [34], FFOIL [38], GOLEM
[30], MagicHaskeller [16], FLIP [12], IGOR I [26] and IGOR II [23]. Further a CCRS
framework was designed to describe those IP systems. A CCRS is a (conditional)
combinatory rewrite system that is based on a combination of term rewriting rules,
conditional rules and meta-variables that allow for generalisation over functions with a
given arity. All systems were first characterized, then classified into this framework and
compared by testing their efficiency in form of runtimes on different problems (classifying
numbers in even/odd, sorting, reversing a list, etc.). While, for example, FFOIL failed
on nearly all problems by providing wrong results, IGOR II – a system designed by one
of the authors Emanuel Kitzelmann – or MagicHaskeller proved to be rather successful
in synthesizing programs [13].

A year later – in 2010 – a survey on different techniques and systems for inductive
programming was done by Emanuel Kitzelmann [25] but due to the recent developments
in program synthesis some of the more up to date tools such as Flash Fill [6] or Metaopt
[4] were not covered in his paper. The compared tools were divided into the two already
mentioned subcategories of inductive programming, ILP (see Section 2.1) and IFP
(see Section 2.2) and further described, but no benchmarking of any kind was done.
Furthermore the efficiency and performance of the tools was not evaluated and the
capabilities as well as the limitations of the systems were not discussed.

Comparing such systems seems and proved to be rather difficult because mostly it is
not possible to apply them to the same tasks because they were designed for different
kind of problems and input, e.g., Metaopt can handle strings well while FOIL performs
better on numbers. Nonetheless Pantridge et al. [35] performed a survey on a number of
IP systems such as Flash Fill [6] , MagicHaskeller [16], TerpreT [7] and two forms of
genetic programming methods, PushGP and Grammar Guided Genetic Programming.
They used a benchmark suite for program synthesis with basic programming problems –
taken from an introductory computer science textbook – to make a comparison possible.

12

3.3 Surveys of IP Systems

This benchmark suite was designed by Thomas Helmuth and Lee Spector in 2015 [11] and
contains 29 basic problems such as computing the sum of an integer and a float number,
comparing string lengths or printing the smallest of four given integers. Pantridge et
al. concluded that although the computation costs of genetic programming systems are
rather high, they are more capable of successfully synthesizing programs [35].

Recently a comprehensive survey that focuses on describing inductive logic programming
in detail as well as comparing inductive logic programming systems was presented in a
preprint by Andrew Cropper and Sebastijan Dumančić [2]. The survey covers prominent
examples of inductive synthesis tools such as FOIL [37], PROGOL [29] and Metagol [32].
Altogether 14 ILP systems were analyzed and compared on five different dimensions and
four systems were described more precisely and in detail. The method that was used
to compare all 14 systems differs from the usual methods described above as not only
different programming problems but rather dimensions such as noise, optimality, infinite
domains, recursion and predicate invention were used to compare the systems [2]. It is
worth mentioning that Cropper and Dumančić define optimality not only as shortest
runtime possible but rather include aspects such as a minimal hypothesis (minimal
number of clauses, literals, etc.) in their analysis.

13

4 Applications of Program Synthesis

4.1 Data Wrangling

One of the most common use cases for program synthesis is data wrangling, which
includes all transformations based on data. For example “cleaning, transforming, and
preparing data”1 in different kind of ways is data wrangling.

According to Gulwani et al. [9] data engineers and/or data scientists spend about 80%
of their time on manipulating data in different kind of ways, which makes this application
of program synthesis even more interesting. Especially when economical factors are
considered.

A state of the art tool in this section is Microsoft’s Flash Fill technology that was first
released in in Excel 2013 [8] and which was already mentioned in the introduction of this
thesis.

4.2 Automated Program Repair

Another use case for program synthesis is code repair, where bugs in code written by
human programmers should automatically be fixed [9, 35]. Under the assumption that a
program P with a specific number of bugs and a specification φ exists, the code repair
tool computes a new program P ′ that satisfies φ [9]. This is mostly done by finding
alternatives for the used expressions in the original program and then testing if the
program satisfies the given specification after applying the generated expressions.

This could be used in many fields of computer science. One interesting application is
using automated program repair for automatically correcting programming assignments
from students. For example, the system AutoProf [43] is designed for a usage like this.

4.3 Code Suggestions

In the dimension of Software Engineering program synthesis is used for autocompletion
or finding code suggestions [9]. Although such tools are currently only able to complete
expressions after typing a few letters, they could be able to complete whole code blocks
and not only a couple of tokens in the future [9].

There exist different techniques for designing such tools. While statistical approaches
use probabilistic models and a web search for code snippets, type-directed completion

1Gulwani et al. 2017 [9], p. 15

14

4.4 Superoptimization

approaches use primarily typing information but also a ranking function and space
abstractions to synthesize code sequences [9].

More advanced autocompletion tools would for sure be an extension for every program-
mer especially in respect of programming languages where library functions are used to a
large extend.

As nearly every IDE has its own tool for code completion there are many examples for
the use of program synthesis in this area.

4.4 Superoptimization
In order to make machine code as optimal as possible, program synthesis is used [9]. The
goal is to synthesize a better – or more efficient – program from a given piece of code.
Therefor program synthesis is used for finding the shortest (machine) code sequence.

Although partial improvements are done by compilers, they do not produce optimal
code. Most compilers just improve the code instead of really provide the most efficient
code sequence for a given program. The goal of superoptimization is precisely to generate
optimized machine code and therefore optimize the efficiency of code as much as possible.

Superoptimization is mostly used to optimize linear code fragments, but also for
optimizing loops in the context of automatic vectorization as well as for bitvector
programs [9].

4.5 Teaching Tool for Programming Novices
Learning how to program or even learning a new programming language can be really
hard. The user hast to memorize the syntax as well as the semantic aspect and if available
also some of the standard library functions. That is why program synthesis is also used
in the context of education.

As an example the web-based automatic programming tool MagicHaskeller [16] sup-
ports users with learning and understanding functional programming. The tool is able to
synthesize Haskell expressions by giving just one input-output example which makes it
easy to use. Furthermore it is available to use online.

15

5 Tools, Frameworks and Systems

5.1 MagicHaskeller

MagicHaskeller1 is an inductive functional programming tool developed by Susumu
Katayama in 2005 and its algorithm as well as its implementation was described in
multiple papers (e.g. [15, 16, 17, 20, 22]). Parts of the system were modified and
improved several times [18, 19, 21], which makes it quite difficult to understand what
kind of algorithm is used in the current and available version.

The goal of MagicHaskeller is to help users to learn the syntax and semantics as well
as the standard library functions of Haskell. This is done by offering a web interface
to quickly synthesize programs. Furthermore MagicHaskeller can be included and used
as library within GHCi (Glasgow Haskell Compiler’s interactive environment), as API
for inductive program synthesis and it also comes with an executable for a standalone
program synthesizer [22].

Only one input-output example is needed to use MagicHaskeller which makes it
intuitive to use. Examples can either be an incomplete specification or a condition that
must be satisfied by the emerging program. If an incomplete specification is used, it must
be a Boolean-valued expression such as shown in Listing 5.1, where f is a free variable.

1 f [" ABCDE ", "DF","1234", ""] == ["", "DF","1234"," ABCDE "] �
Listing 5.1: An input-output example for MagicHaskeller.

MagicHaskeller synthesizes a program through applying an exhaustive and systematic
breadth-first search. It uses a generate-and-test approach as briefly described in Section 2.2,
which means that first all type-correct expressions for a type given by the user or inferred
by the system are generated by the main part of the system – the program generator.
The emerging expressions include function composition, λ-abstractions or functions from
the Haskell standard library.

After generating all possible expressions bottom-up (smallest expressions with minimal
program length first and then increasing the size) the emerging expressions are compiled
and tested until termination or a timeout is reached. As a consequence the most
generalized expression can be obtained and overfitting is prevented.

Due to the exhaustive search the problem size is limited (i.e. the system is not able to
find solutions for more complex problems), which means that synthesizing big programs
is not possible. However, also other systems that do not use such a search technique

1http://nautilus.cs.miyazaki-u.ac.jp/cgi-bin/MagicHaskeller.cgi

16

http://nautilus.cs.miyazaki-u.ac.jp/cgi-bin/MagicHaskeller.cgi

5.1 MagicHaskeller

have problems to deal with big problem sizes. By applying an exhaustive and therefore
complete search it is furthermore guaranteed that the solution is complete [13].

The way MagicHaskeller generates expressions for a given type conforms the way
propositions are proved under Curry-Howard isomorphism [21]. The Curry-Howard
isomorphism (also known as Curry-Howard correspondence) describes the relationship
between type values and proofs of propositions. Similar to generating a proof tree for
validating a proposition, MagicHaskeller generates programs that satisfy a given type by
also generating a proof tree [19]. This makes the system basically to an extension of an
automatic prover algorithm.

5.1.1 The Algorithm
To synthesize Haskell programs the system requires a so called component library, which
consists of a Haskell source file that describes the available function set. The algorithm
consists of the following four steps [15]:

1. First the component library (as Haskell source file) is read to the interpreter when
the system gets invoked.

2. Then the specification given by the user – consisting of a type and an expression
(the property or property function) – is read. If no type is defined by the user, it is
inferred by using a conventional Hindley-Milner style type inference algorithm on
the given input-output examples.

3. Then expressions that match the requested or inferred type are generated.

4. Finally, the synthesized expressions are tested. To test if a generated expression
satisfies the specification the property function is executed with the synthesized
program as the argument. If so, the interpreter returns True and the system
terminates. If the return value is False, the described process is repeated until True
can be obtained as return value [15].

A graphical representation of the structure of the system can be found in Figure 5.1.1.

Generation of Expressions

In the following the generation of expression is described by assuming the type given to
the program generator is ∀a b.[a]→ b→ Int2. The algorithm then proceeds as follows:

1. First the type variables that are assumed to be universal quantifiers such as a and
b are replaced by new, non-existent type constructors (free variables), for example
G0 and G1. Thus we obtain [G0]→ G1→ Int.

2. Next a function called unifyingExprs, whose type definition is shown in Listing 5.2,
is invoked.

2cf. Katayama 2007 [17], p. 116f.

17

5 Tools, Frameworks and Systems

Figure 5.1.1: System structure of MagicHaskeller ([17], p. 126).

1 unifyingExprs :: [(Expression ,Type)] -> Type -> TI Recomp Expression �
Listing 5.2: The type of the function unifyingExprs.

The first argument [(Expression,Type)] represents a list of variables and their
types from the component library, the second argument Type stands for the re-
quested type. Note that Expression, Type, TI and Recomp are defined datatypes
and monads. TI (see Listing 5.3) was defined as a monad for type inference with
Subst as the current substitution and a parameter Int that represents the ID of
the next fresh variable. If possible, it returns the inferred type a. Recomp is a more
efficient implementation of Spivey’s monad for breadth-first search [44]. To limit
the consumption of heap space Katayama defined the monad Recomp as shown in
Listing 5.4. In the function unifyingExprs both monads are used in the form of
TI Recomp Expression.

1 newtype TI a = TI (Subst -> Int -> Maybe (a, Subst , Int))
2 newtype (Monad m) => TI m a = TI (Subst -> Int -> m (a, Subst , Int)) �

Listing 5.3: The type inference monad [16, 17].

1 newtype Recomp a = Rc {unRc :: Int -> Bag a}
2 instance Monad Recomp where
3 return x = Rc f where f 0 = [x]
4 f _ = []
5 Rc f >>= g = Rc (\n -> [y | i <- [0..n]
6 , x <- f i
7 , y <- unRc (g x) (n-i)])
8
9 instance MonadPlus Recomp where

10 mzero = Rc (const [])

18

5.1 MagicHaskeller

11 Rc f 'mplus ' Rc g = Rc (\i -> f i ++ g i) �
Listing 5.4: The Recomp monad that recomputes everything to prevent enormous heap

consumption [16, 17].

1 module Library where
2
3 zero :: Int
4 zero = 0
5
6 inc :: Int -> Int
7 inc = \x -> x+1
8
9 nat_para :: Int -> a -> (Int -> a -> a) -> a

10 nat_para = \i x f -> if i == 0 then x
11 else f (i -1) (nat_para (i -1) x f)
12
13 nil :: [a]
14 nil =[]
15
16 cons :: a -> [a] -> [a]
17 cons = (:)
18
19 list_para :: [b] -> a -> (b -> [b] -> a -> a) -> a
20 list_para = \l x f -> case l of
21 [] -> x
22 a:m -> f a m (list_para m x f) �

Listing 5.5: A simplified component library [16, 17].

To simplify the following explanations it is assumed that only expressions of type
Int are required. The function unifyingExprs first generates a list of functions
taken from the component library where the return type is also Int. When using
a library consisting of the functions shown in Listing 5.5, we obtain as so-called
“head candidates”3 the functions zero, inc, nat_para and list_para. Now the
most general unifier is applied as substitution to each function, e.g., for list_para
we obtain the type signature shown in Listing 5.6 after applying [a↦ Int].

1 list_para :: [b] -> Int -> (b -> [b] -> Int -> Int) -> Int �
Listing 5.6: The type signature of list para after applying the substitution [a↦ Int].

3. Then a prioritized bag (multiset) of expressions is obtained by calling the function
unifyingExprs recursively on the argument types of the head candidates. For
list_para the argument types would be [b], Int and (b -> [b] -> Int -> Int).
The obtained expressions are called “spine candidates”4.

4. As a last step the spine candidates are applied to the corresponding head candidates
3Katayama 2007 [17], p. 116
4ib., p. 117

19

5 Tools, Frameworks and Systems

to obtain the final prioritized bag, a multiset of generated expressions and possible
candidates for the final output program.

To reduce the number of generated expressions MagicHaskeller does not generate any
expressions that are theoretically known to be equivalent to already generated expressions,
which is done via pattern matching. For example, it is known that foldr op x [] = x
and therefore the system avoids to construct expressions of the form foldr _ _ []
[16]. Redundancies are then found by executing the expressions with random arguments
(random testing) [18, 19]. To do so the Haskell testing library QuickCheck [1] is used.

5.1.2 Implementation – Web Interface

I first tested MagicHaskeller through the web interface. By giving one input-output
example I tried to synthesize a sort function which is a rather simple problem. The tool
was able to synthesize two expressions for the first example, which was an unsorted list
with numbers from 1 to 10. The web interfaced as well as the synthesized expressions are
shown in Figure 5.1.2. The tool was able to synthesize the standard library sort function
which is exactly the expectable result. Due to the fact that all numbers from 1 to 10
occur in the given input-output example, MagicHaskeller synthesized another expression
that returns a list with numbers from 1 to the length of the input list in ascending order.

Furthermore the tool offers the possibility to directly access the documentation of each
part of each expression. By clicking on, e.g., the synthesized function length the entry
on the predefined Haskell Prelude function length is opened and explained.

As it is shown in Figure 5.1.3 the web interface of MagicHaskeller comes with random
examples to test the synthesized expression. Often these examples contain edge cases
like empty sets or negative numbers. This feature is invoked by clicking on the Exemplify
button after specifying a function and synthesizing it as it was done in Figure 5.1.2.

Figure 5.1.2: MagicHaskeller is able to quickly synthesize the sort function.

As a second input-output example for sorting numbers I passed the sequence shown
in Listing 5.7, which led to an even better result because now the tool was able to only
synthesize the sort function.

1 f [55, 23, 11, 75, 66, 17] == [11 , 17, 23, 55, 66, 75]

20

5.1 MagicHaskeller

Figure 5.1.3: The synthesized function can automatically be applied to random arguments.

�
Listing 5.7: An input-output example for sorting numbers with MagicHaskeller.

Since sorting numbers worked fine I tried to synthesize expressions that apply some sort
of string manipulation to given strings. First I used some really simple examples like
removing the first name from a full name, e.g., “Jonathan Moore” becomes “Moore”,
which worked really well. After that I tried to synthesize a string manipulation that
for example can be done really fast and effective by the already mentioned Microsoft
Excel feature Flash Fill: splitting full names into first and last names. To synthesize this
kind of program I used the input-output example shown in Listing 5.8, which lead to the
synthesis of the expression shown in Listing 5.9, which indeed is a correct function to
split full names into first and last names.

1 f [" Jonathan Moore ", " Olivia Dunlop ", " Gabrielle Mull"] == [[" Jonathan ", " Olivia ",
" Gabrielle "], [" Moore ", " Dunlop ", "Mull"]] �

Listing 5.8: An input-output example for splitting strings with MagicHaskeller.

1 f = (\a -> transpose (map words a)) �
Listing 5.9: An expression found by MagicHaskeller for splitting strings into first and

lastnames.

5.1.3 Implementation – Haskell Package

As a next step I tried to install and use the MagicHaskeller package. After some troubles
the execution of the package worked and I tested the system by using the same input-
output examples as described in the previous chapter.
There are three aspects I want to talk about in this section:

1. The documentation of the Haskell package.

2. Non-repeatable results.

21

5 Tools, Frameworks and Systems

3. Different results.

First of all, the documentation of the package leaves much to be desired. In fact,
three sources are available: A short paper written by Katayama himself [20] called
MagicHaskeller: System demonstration, the corresponding web page where the web appli-
cation can be found and the package and module documentation on hackage.haskell.org.
The paper contains an installation guide (that did not work for me) and some examples.
On the website another installation guide and the web interface for MagicHaskeller can
be found. The module documentation contains a list of implemented Haskell functions,
but no description of how to use the system.

The examples described in the paper [20] show how to use the command line version
of MagicHaskeller, but on the first attempt I was not able to execute those examples,
which leads me to the next point: non-repeatable results. By simply following the steps
for synthesizing a function that doubles characters in a given string, which is described
in the system demonstration5, only an error message was produced. Executing the input
shown in line 1 of Listing 5.10 did not work. After changing the input to the expression
shown in line 2 of Listing 5.10 I was able to obtain the results described in the paper [20].

1 \f -> f "abc" == " aabbcc "
2 printAll True $ \f -> f "abc" == " aabbcc " �

Listing 5.10: Input statement for the web interface compared to the one for the usage in
GHCi.

It was further not possible to reproduce the results I got for the expression shown in
Listing 5.7, because the system did not terminate on this example. Splitting names into
first and last names did not work too. The example in Listing 5.11 shows that the web
interface produces a different, less complex output (first line) compared to using the
MagicHaskeller as module in GHCi (second line).

1 f = length
2 \a -> list_para a 0 (_ _ d -> (1 GHC.Num .+) d) �

Listing 5.11: Output of the web interface compared to the one of the module in GHCi.

It is noticeable that the execution of examples in GHCi needs more time than executing
them in the web interface. This is interesting considering that the computation is done
on a backend server, thus bandwidth and delay could be an issue too.

The efficiency of the learning phase depends on the size of the search space. For
example synthesizing a sort function for numbers or a split function for full names was
rather fast (seconds) which shows that MaigcHaskeller is efficient in synthesizing such
(small) programs. The tool performs well on list manipulations (strings or integer lists).
However, due to the exhaustive search, synthesizing more powerful programs leads to a
huge search space and therefore also the execution time increases steadily [13].

5cf. Katayama 2011 [20], p. 3

22

5.2 FOIL

5.2 FOIL

FOIL (First-Order Inductive Learner) is an inductive logic programming system developed
by John Ross Quinlan in 1990 that is able to synthesize function-free Horn clause
definitions from examples [37]. It is based on an algorithm that uses a top-down
approach, meaning that first a general hypothesis is formed which is then formalized.
The system first looks for a literal that describes some of the positive examples (⊕ tuples,
that are known to be in the target relation) and can be added to the clause, removes
those examples and updates the set of tuples (the training set). Then the search is
continued until there are no ⊕ tuples left in the training set.

A Horn clause is a formula of the form P1 ∧ P2 ∧ ... ∧ Pn → Q where P1, ..., Pn, and Q
are atoms, ⊺ or �. The system was designed to learn definitions of a relation in terms
of itself and other relations [39]. To show the concept of learning relations, FOIL is
often described by using family relations: E.g., the system is able to learn the concept
grandfather(X,Y) when given the relations father(X,Y) and parent(X,Y). In the following
section this will be further explained by using another simple example.

To use FOIL, a file where types are specified and relations are defined is needed.
Additionally also test cases can be defined in this file. To obtain resulting Horn clauses
the system must be invoked with the mentioned file as input parameter.

Although the system was developed thirty years ago and therefore one of the first
program synthesis tools, it still seems to be quite powerful compared to other existing and
much younger systems. Of course the obtained Horn clauses first have to be translated
into executable code by using programming languages such as Prolog, which makes the
systems kind of impracticable.

5.2.1 The Algorithm

As done by Quinlan6 the algorithm of the system will be described by using an example
that deals with the reachability of nodes in a network such as illustrated in Figure 5.2.1.
The target relation of FOIL is based on a predicate P (X1,X2, ...,Xk) such as can-
reach(X1,X2) where X1 is the starting node and X2 is the node that can be reached
through one or more paths when starting at node X1.

The training set consists of tuples (X1,X2, ...,Xk) where values are assigned to the
variables. The tuples are labelled with either ⊕ (for positive examples; tuples that are
known to be in the target relation) or ⊖ (for negative examples; tuples that are not
part of the target relation) [37, 39]. For the relation can-reach(X1,X2) and the network
illustrated in Figure 5.2.1 the 81 tuples shown in (5.2.2) and (5.2.3) are part of the
training set T .

⊕ ∶ ⟨0,1⟩, ⟨0,2⟩, ⟨0,3⟩, ⟨0,4⟩, ⟨0,5⟩, ⟨0,6⟩, ⟨0,8⟩, ⟨1,2⟩, ⟨3,2⟩, ⟨3,4⟩, (5.2.2)
⟨3,5⟩, ⟨3,6⟩, ⟨3,8⟩⟨4,5⟩, ⟨4,6⟩, ⟨4,8⟩, ⟨6,8⟩, ⟨7,6⟩, ⟨7,8⟩

6Quinlan 1990 [37], p. 241ff.

23

5 Tools, Frameworks and Systems

Figure 5.2.1: A simple network ([37], p. 241).

⊖ ∶ ⟨0,0⟩, ⟨0,7⟩, ⟨1,0⟩, ⟨1,1⟩, ⟨1,3⟩, ⟨1,4⟩, ⟨1,5⟩, ⟨1,6⟩, ⟨1,7⟩, ⟨1,8⟩,
⟨2,0⟩, ⟨2,1⟩, ⟨2,2⟩, ⟨2,3⟩, ⟨2,4⟩, ⟨2,5⟩, ⟨2,6⟩, ⟨2,7⟩, ⟨2,8⟩, ⟨3,0⟩, (5.2.3)
⟨3,1⟩, ⟨3,3⟩, ⟨3,7⟩, ⟨4,0⟩, ⟨4,1⟩, ⟨4,2⟩, ⟨4,3⟩, ⟨4,4⟩, ⟨4,7⟩, ⟨5,0⟩,
⟨5,1⟩, ⟨5,2⟩, ⟨5,3⟩, ⟨5,4⟩, ⟨5,5⟩, ⟨5,6⟩, ⟨5,7⟩, ⟨5,8⟩, ⟨6,0⟩, ⟨6,1⟩,
⟨6,2⟩, ⟨6,3⟩, ⟨6,4⟩, ⟨6,5⟩, ⟨6,6⟩, ⟨6,7⟩, ⟨7,0⟩, ⟨7,1⟩, ⟨7,2⟩, ⟨7,3⟩,
⟨7,4⟩, ⟨7,5⟩, ⟨7,7⟩, ⟨8,0⟩, ⟨8,1⟩, ⟨8,2⟩, ⟨8,3⟩, ⟨8,4⟩, ⟨8,5⟩, ⟨8,6⟩,
⟨8,7⟩, ⟨8,8⟩

First the training set is established as shown above. Then the algorithm iterates through
all ⊕ tuples and seeks for a function-free Horn clause of the form P (X1,X2, ...,Xk) ←

L1, L2, ...Ln that describes some of the ⊕ tuples. If such a clause is found, all tuples that
satisfy the right-hand side of the detected clause are removed from the training set. This
procedure is continued until there are no more ⊕ tuples left in the training set [37]. After
that, the clauses are checked for any redundancies and reordered: Non-Recursive clauses
(or base cases) must come before recursive clauses [39].

Clauses for our can-reach(X1,X2) problem are found by a greedy cover algorithm that
can be described by the following steps:

1. The clause is initialized as shown in (5.2.4).

can-reach(X1,X2)← ... (5.2.4)

2. A local training set T1 (more general Ti where i = 1) is initialized (in the first
iteration) to the training set T described above. This local training set contains all
⊕ tuples.

3. While Ti contains ⊖ tuples:
• First the algorithm searches for an appropriate literal Li that can be added

to the right-hand side of the clause. FOIL searches for gainful literals, which
means that a literal must help to remove ⊖ tuples from the training set. The
gain of this literals must be close to the maximum gain that is possible (close

24

5.2 FOIL

means ≥ 80% of it). The gain rate is determined by the formula in (5.2.5)
with T+ as the number of ⊕ tuples and I(T) as the information provided by
the training set.

T+ ∗ I(T) (5.2.5)

The first literal L1 that can be found for can-reach(X1,X2) is shown in (5.2.6).

can-reach(X1,X2)← linked-to(X1,X2) (5.2.6)

For the target-relation can-reach this leads to updated ⊕ tuples (see (5.2.7))
while the ⊖ tuples remain the same.

⊕ ∶ ⟨0,2⟩, ⟨0,4⟩, ⟨0,5⟩, ⟨0,6⟩, ⟨0,8⟩, ⟨3,5⟩, ⟨3,6⟩, ⟨3,8⟩, ⟨4,8⟩ (5.2.7)

This is why a new L2 literal linked-to(X1,X3) to replace linked-to(X1,X2)
(this literal causes no ⊖ tuples to be removed) as shown in (5.2.8) is selected.

can-reach(X1,X2)← linked-to(X1,X3) (5.2.8)

Now ⊖ tuples starting with ⟨2, ...⟩, ⟨5, ...⟩ and ⟨8, ...⟩ can be removed.
• Then a new training set (Ti +1) that only contains the tuples of Ti that satisfy

the found literal Li from the previous step is produced. Now we obtain triples
(due to the introduced variable X3) and a new training set T2 of triples can
be generated as shown in (5.2.9) and (5.2.10).

⊕ ∶ ⟨0,2,1⟩, ⟨0,2,3⟩, ⟨0,4,1⟩, ⟨0,4,3⟩, ⟨0,5,1⟩, ⟨0,5,3⟩, ⟨0,6,1⟩,
⟨0,6,3⟩, ⟨0,8,1⟩, ⟨0,8,3⟩, ⟨3,5,2⟩, ⟨3,5,4⟩, ⟨3,6,2⟩, ⟨3,6,4⟩, (5.2.9)
⟨3,8,2⟩, ⟨3,8,4⟩, ⟨4,8,5⟩, ⟨4,8,6⟩

⊖ ∶ ⟨0,0,1⟩, ⟨0,0,3⟩, ⟨0,7,1⟩, ⟨0,7,3⟩, ⟨1,0,2⟩, ⟨1,1,2⟩, ⟨1,3,2⟩,
⟨1,4,2⟩, ⟨1,5,2⟩, ⟨1,6,2⟩, ⟨1,7,2⟩, ⟨1,8,2⟩, ⟨3,0,2⟩, ⟨3,0,4⟩,
⟨3,1,2⟩, ⟨3,1,4⟩, ⟨3,3,2⟩, ⟨3,3,4⟩, ⟨3,7,2⟩, ⟨3,7,4⟩, ⟨4,0,5⟩,
⟨4,0,6⟩, ⟨4,1,5⟩, ⟨4,1,6⟩, ⟨4,2,5⟩, ⟨4,2,6⟩, ⟨4,3,5⟩, ⟨4,3,6⟩, (5.2.10)
⟨4,4,6⟩, ⟨4,4,6⟩, ⟨4,7,5⟩, ⟨4,7,6⟩, ⟨6,0,8⟩, ⟨6,1,8⟩, ⟨6,2,8⟩,
⟨6,3,8⟩, ⟨6,4,8⟩, ⟨6,5,8⟩, ⟨6,6,8⟩, ⟨6,7,8⟩, ⟨7,0,6⟩, ⟨7,0,8⟩,
⟨7,1,6⟩, ⟨7,1,8⟩, ⟨7,2,6⟩, ⟨7,2,8⟩, ⟨7,3,6⟩, ⟨7,3,8⟩, ⟨7,4,6⟩,
⟨7,4,8⟩, ⟨7,5,6⟩, ⟨7,5,8⟩, ⟨7,7,6⟩, ⟨7,7,8⟩

• As a last step i is incremented.

25

5 Tools, Frameworks and Systems

There are still ⊖ tuples left which is why the inner loop is entered again and another
literal can-reach(X3,X2) is selected. This leads to T3, a training set that only contains ⊕
tuples, which is shown in (5.2.11).

⊕ ∶ ⟨0,2,1⟩, ⟨0,2,3⟩, ⟨0,4,3⟩, ⟨0,5,3⟩, ⟨0,6,3⟩, ⟨0,8,3⟩, ⟨3,5,4⟩, (5.2.11)
⟨3,6,4⟩, ⟨3,8,4⟩, ⟨4,8,6⟩

All ⊖ tuples have been removed and all ⊕ tuples are covered by one of those clauses.
This leads to the final definition of can-reach (see (5.2.12)).

can-reach(X1,X2)← linked-to(X1,X3), can-reach(X3,X2) (5.2.12)

5.2.2 Implementation

I had access to FOIL 6.0, implemented by Q. R. Quinlan in association with Mike
Cameron-Jones in October 1993. The implementation is written in ANSI C (also known
as C89).

The input to this command line implementation of FOIL can be divided into three
parts – each followed by a blank line – whereby the last part and the corresponding
as well as the previous blank line are optional. The following example comes with the
implementation of FOIL and the goal is to find a clause that is able to tell if a number
between 1 and 3 is a part (a member) of a given list that contains a maximum of three
numbers.

First types and constants are declared as shown in Listing 5.12.

1 X: 1, 2, 3.
2 L: [111] , [112] , [113] , [11], [121] , [122] , [123] , [12], [131] , [132] ,
3 [133] , [13], [1], [211] , [212] , [213] , [21], [221] , [222] , [223] ,
4 [22], [231] , [232] , [233] , [23], [2], [311] , [312] , [313] , [31],
5 [321] , [322] , [323] , [32], [331] , [332] , [333] , [33], [3], *[]. �

Listing 5.12: Declaration of types and constants.

Here L represents the type list, while X represents an element of such a list. The
second part of the input defines the relations by specifying the ⊕ tuples. ⊖ tuples can be
specified too, but their specification is not necessary as FOIL is able to determine them
by using the closed-world-assumption (all not specified tuples must therefore be ⊖ tuples).
To follow the previous example, we have a relation member(X, L) with the two arguments
X (a list element) and L (the list itself). The input defining the relations would look like
the one shown in Listing 5.13 (positive examples) and Listing 5.14 (negative examples).

1 member (X,L)
2 1,[1]
3 3,[3]
4 1,[11]
5 1,[13]
6 ;

26

5.2 FOIL

�
Listing 5.13: Positive examples for member(X, L).

1 member (X,L)
2 1,[]
3 1,[3]
4 1,[33]
5 1, [333]
6 . �

Listing 5.14: Negative examples for member(X, L).

The semicolon is necessary to distinguish positive (⊕) from negative (⊖) tuples. The
tuples defined in Listing 5.13 and 5.14 are only a small part of the complete input given
for this example and can be looked up in the file member.d (see supplementary material7).
Then also other relations can be defined as input such as shown in Listing 5.15

1 * components (L,X,L) #--/-##
2 [1],1,[]
3 [2],2,[]
4 [3],3,[]
5 [11],1,[1]
6 [12],1,[2]
7 [13],1,[3]
8 [21],2,[1]
9 [22],2,[2]

10 . �
Listing 5.15: The components relation.

Unlike the first definition here the asterisk in front of the relation’s name tells FOIL
that no definition should be constructed for this relation with the three arguments L
(a list), X (the head element of this list) and L (the tail of this list). The characters
− −/ −## are a key like used in databases. Again the example above is not complete
and can be looked up on GitLab.

The third (optional) part of the input are test cases where the first line indicates
which relation should be tested and the following lines are the test arguments X and L
separated by a comma and followed by a colon, then a space and a sign (+ or −) that
indicates whether the tuples should satisfy the definition (+) or not (−). For example,
test cases for the member relation could look like the one shown in Listing 5.16.

1 member
2 2,[]: -
3 3, [121]: -
4 3, [23]: +
5 3, [232]: +
6 .

7https://git.uibk.ac.at/csas8322/learning-efficient-programs-bachelor-thesis

27

https://git.uibk.ac.at/csas8322/learning-efficient-programs-bachelor-thesis

5 Tools, Frameworks and Systems

�
Listing 5.16: Test cases for the member problem.

After executing FOIL with the input given in the file member.d and the command
foil6 < member.d the clauses shown in Listing 5.17 can be derived within seconds.

1 member (A,B) :- components (B,A,C)
2 member (A,B) :- components (B,C,D), member (A,D) �

Listing 5.17: Output clauses.

Those clauses can now be translated into Prolog code, which is shown in Listing 5.18

1 member (A,B) :- components (B,A,C).
2 member (A,B) :- components (B,C,D), member (A,D).
3
4 components ([X|Xs],X,Xs). �

Listing 5.18: Output of FOIL translated into Prolog code.

5.3 Metaopt
Metaopt is an inductive logic programming system implemented in Prolog that is capable
of synthesizing efficient programs, meaning that it is able to learn lower cost Prolog
programs through iteration [4]. In this case lower cost programs means programs that
have a minimal time complexity, thus a low runtime. According to the authors Andrew
Cropper and Stephen H. Muggleton Metaopt [4] is the first system that is able to learn
such minimal cost algorithms.

The system induces efficient Prolog programs by finding meta-substitutions for positive
examples – which is done by a meta-interpretive learner – that are applied to meta-rules.
Before that the meta-rules are recursively proven by using meta-interpretation. In the
end the resulting program is checked by applying negative examples [4].

Metaopt is the result of years of research in the field of program synthesis. In the last
years Cropper and Muggleton focused on synthesizing efficient code sequences. MetagolO
[3] – another system developed by Cropper and Muggleton in 2015 – is for example able
to learn efficient robot strategies, which are dyadic logic programs consisting of predicates
with two arguments for in- and output [4]. But the system is not able to induce programs
of any kind and is further restricted in its usage, e.g, the user must specify the costs of
predicates.

Metaopt on the other hand is able to learn minimal cost programs and also only a
small number of examples (< 20) is necessary to do so. The system synthesizes efficient
code sequences by further restricting the hypothesis space in each iteration which is a
search procedure called “iterative descent”8. Metaopt seems to be particularly successful

8Cropper & Muggleton 2019 [4], p. 1065

28

5.3 Metaopt

when it comes to string transformations [4].

5.3.1 The Algorithm

Metaopt is an extension of Cropper and Muggleton’s previous system MetagolO [3], that
is based on the algorithm used for another system of Muggleton et al., MetagolD [33],
which is why I will shortly describe the algorithm of this system.
MetagolD is based around a meta-interpreter that is able to invent predicates (predicate
invention). To do so the user has to provide meta-rules (see Table 5.1), which are
higher-order meta-rules that describe which clauses are permitted in the hypothesised
programs.

Name Meta-Rule Order
Instance P (X,Y)← True
Base P (x, y)← Q(x, y) P ≻ Q

Chain P (x, y)← Q(x, z),R(z, y) P ≻ Q,P ≻ R

TailRec P (x, y)← Q(x, z), P (z, y) P ≻ Q,
x ≻ z ≻ y

Table 5.1: Meta-rules as used for the meta-interpreter [33].

The meta-interpreter then tries to prove the given examples and the corresponding
order constraints to each existing meta-rule to ensure that the proof terminates. If a
proof is successful, the associated substitution is saved and later applied to the meta-rules
which leads to an inductive generalisation of the given examples in form of a first-order
definite program [33].

Metaopt uses meta-interpretive learning (MIL) to minimise the cost of a synthesized
program [4]. The input for the MIL learner is a triple of the form (B,E,Φ) where:

• B = BC ∪M , with BC as a set of definite clauses and M as a set of meta-rules.

• E = (E+,E−), a set of positive and negative examples.

• Φ is a program cost function.

The cost minimal MIL learner returns a program H ∈ VB,E such that H ⪯Φ H ′ for
all H ′ ∈ VB,E [4]. The size is defined by the number of clauses in H and programs are
ordered by their efficiency (⪯Φ) which is defined by the maximum cost of a program. The
system measures the cost of a program by measuring the runtime or time complexity as
a function of the SLD-tree that is being searched. SLD-resolution (= Selective Linear
Definite clause resolution) is used in logic programming to formalise computation. For a
definite program H the tree cost can be determined by the function shown in (5.3.1),
where G is an initial goal, T a SLD-tree, the branch size(H,G) the number of resolutions
prior to and including L (the leftmost successful branch of T) and the tree size(H,G)

the number of resolutions of T , a finitely failed tree.

29

5 Tools, Frameworks and Systems

Input Output
My name is John. John
My name is Bill. Bill
My name is Josh. Josh
My name is Albert. Albert
My name is Richard. Richard

Table 5.2: Input-output examples for the learning phase of Metaopt.

tree cost(H,G) =

⎧⎪⎪
⎨
⎪⎪⎩

branch size(H,G) if T has a successful branch
tree size(H,G) if T is finitely failed

(5.3.1)

Metaopt takes positive and negative examples (atoms) as input and tries to prove the
positive ones. The cost of proving one atom is added to the overall proof cost and when
a certain bound is exceeded, the proof is terminated because obviously the program is to
inefficient. This bound is determined by a so called “iterative descend procedure”9, an
algorithm that searches for a minimal cost program Hi in an iterative depth-first way on
the number of clauses.

As already described for MetagolD also Metaopt forms a logic program after proving
all positive examples by applying the meta-substitutions to the associated meta-rules.
As a final step the program is tested by checking it with the negative examples and if
inconsistency is detected the system backtracks and searches in different branches of the
SLD-tree [4].

5.3.2 Implementation
As already mentioned, Metaopt is implemented in Prolog and can be found on GitHub10.
Cropper and Muggleton provide four different categories of examples: converge, duplicate,
strings and postman. Each example folder comes with learning data, already synthesized
programs and results. Further each example is automatically learned by all three systems
(Metagol, MetagolO and Metaopt) while executing the learning phase.

I downloaded the whole project folder and tested the system by first rerunning the
learning step for the string manipulation examples. Even after an execution time of more
than 12 hours only a small part of the examples had been learned. To test the system I
tried one of the string manipulation examples that the system was able to learn in a short
period of time. The algorithm is able to detect names in the sentence “My name is...”.
To do so, the system was provided with five (positive) examples as shown in Table 5.2.

Metaopt then was able to find the code sequence shown in Listing 5.19.

1 f(A,B) :- tail(A,C),f_1(C,B).

9Cropper & Muggleton 2019 [4], p. 1071
10https://github.com/andrewcropper/mlj18-metaopt

30

https://github.com/andrewcropper/mlj18-metaopt

5.4 Hoogle+

2 f_1(A,B) :- f_2(A,C), dropLast (C,B).
3 f_2(A,B) :- f_3(A,C),f_3(C,B).
4 f_3(A,B) :- tail(A,C),f_4(C,B).
5 f_4(A,B) :- f_5(A,C),f_5(C,B).
6 f_5(A,B) :- tail(A,C),tail(C,B). �

Listing 5.19: The code sequence found by Metaopt

The synthesized algorithm can be tested by executing the code in SWI-Prolog in the
command line as shown in Listing 5.20.

$ swipl -q programs / extractName .pl
?- ['e- metaopt '].

true.
?- f([M, y,' ', n, a, m, e,' ', i, s,' ', N, a, t, a, l, i, e, .], X).

X = [N, a, t, a, l, i, e].
?- f([M, y,' ', n, a, m, e,' ', i, s,' ', N, a, t, a, l, i, e, .], [J, o, h, n]).

false .
?- f([M, y,' ', n, a, m, e,' ', i, s,' ', N, a, t, a, l, i, e, .], [N, a, t, h, a,

l, i, e]).
false .

?- halt. �
Listing 5.20: Testing the code in SWI-Prolog.

5.4 Hoogle+

Hoogle+11 is a web-based inductive functional programming (IFP) system that was
recently introduced by James et al. [14]. The tool can be used by either specifying a
type, giving input-output examples (called tests) or a combination of both and returns
a list of synthesized Haskell programs that fulfill the initial goal defined by the input.
Hoogle+ uses Haskell library functions (the component library) to compose such programs.
For example, when giving the input list [1, 1, 1, 2, 2, 3] and its corresponding
output [1, 2, 3] to the web application, the Haskell program shown in Listing 5.21
that removes duplicates from a given list is generated.

1 \xs -> map head (group xs) �
Listing 5.21: A function synthesized by Hoogle+, that removes duplicates.

Especially in functional programming it can sometimes be hard to find even small
pieces of code. That is why the goal of this tool is to help programmers to discover
algorithms for a given problem in the form of a type, one or more tests or both.

As the system synthesizes functions by combining already existing Haskell library
functions an efficient search strategy is necessary. Hoogle+ uses a type-directed search
based on an already existing approach called type-guided abstraction refinement (TyGAR)
11https://hoogleplus.goto.ucsd.edu/

31

https://hoogleplus.goto.ucsd.edu/

5 Tools, Frameworks and Systems

[10] which is why a type definition is needed. As programming novices might not know
anything about types in Haskell, an algorithm that is able to infer types from the given
tests (input-output examples) was developed. Further an heuristic that uses property-
based testing to eliminate uninteresting programs was added to the system. To help the
programmer decide which synthesized code snippet really solves the initial problem, the
tool is able to automatically generate examples for each synthesized expression [14].

Furthermore the tool was tested on 30 people with different background knowledge in
Haskell programming. The programmers had to solve different programming tasks in
Haskell and were allowed to use Hoogle+. This study has shown that the users were able
to solve more tasks and faster by using the tool [14].

5.4.1 The Algorithm

The system synthesizes functions by passing four different steps:

1. Type inference,

2. synthesis of candidate programs,

3. elimination,

4. and comprehension of the synthesized programs.

In the following section I will describe each of the above.
First a type is inferred from the given tests (input-output examples). This could be

problematic as on the one hand tests like "aabbab"→ "abab" and [1, 1, 1, 2, 2]→
[1, 2] have obviously different types ([Char]→ [Char] and [Int]→ [Int]), therefore
a polymorphic type is needed. On the other hand, if only one test with a concrete type
is given, then the question is, if a more general type specification would be more useful
or not. For example, for synthesizing a function that removes duplicates (deduplication)
from a list, the input-output examples (tests) as shown in table Table 5.3 would be
appropriate. The type inference is done by an algorithm called TestToType ([14], 205:9).

xs output
“aaaabbbab” “abab”
[1,1,1,2,2,3] [1, 2, 3]

Table 5.3: Input for the dedup function in Hoogle+.

The input consists of the component library (or environment Γ) and a test suite t. The
output is a sequence of type specifications T . After the input is received the algorithm
proceeds like this:

• A type inference oracle Γ ⊢ eÔ⇒ T computes the most general and concrete types
Ti for each test.

32

5.4 Hoogle+

• Then the function AntiUnifyAll is invoked and the least common generalization
T⊔ of the types Ti is computed. This is done by using anti-unification as described
by Plotkin in 1970 [36].

• The function Inhabited then tries to find a set G which contains all generalizations
of T⊔ that are also likely to be suitable for the synthesis goal.

• Eventually the obtained types are ranked by a heuristic TopK.

For example, if no type is entered for the dedup function, but tests as defined in table
Table 5.3 are given, the TestToType function is invoked which produces the proposals
for the type specification of the function as shown in Listing 5.22.

1 xs: [a] -> [a]
2 (Eq a) => xs: [a] -> [a]
3 (Ord a) => xs: [a] -> [a] �

Listing 5.22: Types inferred by Hoogle+.

In this example a polymorphic type is used as the input-output examples have different
types and therefore in the end the synthesized function must be able to handle both or
more input types.

After that programs are synthesized by using a component-based synthesis algorithm
called TyGAR that generates Haskell programs by taking the type and a set of library
functions as input. Component-based synthesis needs a library of components (such
as Haskell functions) to generate programs. Type-guided abstraction refinement [10]
(TYGAR) is an iterative process for “scalable type-directed synthesis over polymorphic
datatypes and components”12. To find a matching code sequence an abstract transition
net (ATN) [10] – a petri net of abstract types – is constructed. This ATN represents all
possible types and hence all possible solutions which means that one of the paths in this
petri net matches the solution to the initial synthesis problem. To find this path the
algorithm uses already existing SMT-based (satisfiability modulo theories) techniques. If
a path (i.e. a candidate term) is found, it is validated by a type checker. If the term is
well-typed, the solution is found. If not, the ATN is refined and the search is repeated
until a well-typed term is found [10]. This process is illustrated in Figure 5.4.1.

The algorithm is therefore based on a graph search, but due to the polymorphic
components of Haskell such a graph could be endless, which is why the search is only
done on abstract types that represent a set of concrete ones [10].

The last two steps elimination and comprehension use property-based testing as
implemented in the Haskell library SmallCheck [40]. The synthesized programs are
first reduced (elimination process) so that only meaningful and unique ones remain.
Meaningfulness is defined as the existence of an input value for a given program that
leads to termination and to an output value within a given time. On the other hand a
meaningless program is defined as ∀i.⟦p⟧(i) =⊥, where p is the program and i the input
12Guo et al. 2020 [10], p. 12:2

33

5 Tools, Frameworks and Systems

Figure 5.4.1: The synthesis process of TYGAR ([10], 12:3).

value. Uniqueness is defined as the absence of observable equivalence, therefore p /≡ p′

holds for each p′ ∈ P ′, where p and p′ are programs of a set of synthesized programs P ′.
A program p is equivalent to another program p′ if ∀i.⟦p⟧(i) = ⟦p⟧(i) (they produce the
same output for all possible inputs) where i is again an input value [14].

As a last step the system generates three examples (test cases) that show how the
synthesized piece of code works – or which output it produces – on a given input that
is also generated by the system itself. These examples match the three fundamentals
meaningfulness, uniqueness and functionality. Meaningfulness is shown by generating
at least one example that is successful and sometimes also one that is not (hence fails).
Uniqueness is guaranteed by only showing unique examples. To show the user the
functionality of the synthesized program one ore more unique examples illustrate how
the program works [14]. The synthesized program for the dedup example as well as the
generated test cases are shown in Figure 5.4.2.

Figure 5.4.2: An expression for dedup found by Hoogle+ with generated test cases.

34

5.4 Hoogle+

5.4.2 Implementation

Hoogle+ is implemented as a web-based API system, but as already mentioned it does
not terminate even on simple examples.

Figure 5.4.3: The interface of the web-based API Hoogle+ with predefined examples.

In the previous section I described a function called dedup that removes duplicates from
a given list or string. This examples is proposed by the developers in the corresponding
paper and even on the web application of Hoogle+13. However, when running the example
by clicking on the predefined test case the type inference indeed does work, but not the
synthesizing itself.

Figure 5.4.4: Hoogle+ when trying to synthesize the dedup example.

13https://hoogleplus.goto.ucsd.edu/

35

https://hoogleplus.goto.ucsd.edu/

5 Tools, Frameworks and Systems

Also other examples, such as sorting numbers and splitting strings do not work.
The tool automatically cancels the computation after a specified timeout of 360 sec-
onds. Nonetheless there is a way to synthesize the proposed “dedup” example which
can be found in the corresponding paper. The system does find the code sequence
\x -> map head (group x), when given the type Eq a => x:[a] -> [a] and the input-
output example "abaa" → "aba" (see Figure 5.4.2).

36

6 Benchmark and Comparisons

In this section the systems described in the previous chapter will be compared by the
efficiency of the programs that they are able to synthesize. A synthesized program
is efficient, if its runtime is low. The efficiency of the learning phase of each system
was described in the previous chapter. A system is efficient, if its runtime during the
synthesizing process is low.

To compare the tools, a fixed number of simple programming tasks was defined which
will be described later in this chapter. First an attempt to synthesize those tasks is
started for all four systems and in the first place it is checked, if the systems can produce
an output. Then the obtained programs are compared by their correctness and their
efficiency.

6.1 Programming Tasks

The tasks shown in Table 6.1 were selected for comparison. All examples are simple
programming tasks that can be solved by programming novices within one to a few
lines of code. Further these tasks are textbook examples that are used for educational
purposes, for instance, as programming assignments for students. They also combine
manipulation on lists and string manipulations. Some of the tasks were mentioned in
the surveys described in Section 3.3, but it seems like the tasks typically given to ILP
systems are different from those given to IFP systems. That is why I tried to combine
tasks of those different fields and communities.

6.1.1 Sample Solutions

In the following subsection some of the task and their corresponding solutions as Haskell
as well as Prolog code are discussed.

Sort

When looking at the first task sort there are obviously different solutions as sorting
can be done by using different algorithms such as merge sort, quick sort or bubble sort.
To find the most efficient solution, the first step is to compare the complexity of those
sorting algorithms. Quick sort for example is considered to be one of the best sorting
algorithms and has an average time complexity of O(n ⋅ logn), the same applies to merge
sort. Implementations of quick sort in Haskell and Prolog can be found in Listing 6.1
and Listing 6.2.

37

6 Benchmark and Comparisons

Task Description Example

Sort The goal of this task is to sort a given
list of numbers in ascending order. [5, 2, 3, 1, 4] → [1, 2, 3, 4, 5]

Split names The goal of this task is to split full
names into first and last names.

[“Jonathan Moore”] →
[[“Jonathan”], [“Moore”]]

Get initials
The goal of this task is to extract
the initials of a single name or a list
of names.

[“Jonathan Moore”] → [“JM”]

Duplicate
elements

The goal of this task is to duplicate
all elements given in a list or a string.

“abc” → “aabbcc”
[1, 2, 3] → [1, 1, 2, 2, 3, 3]

Find
duplicate

The goal of this task is to find the
element that appears twice in a given
list.

[1, 2, 3, 4, 5, 2] → 2

Remove
duplicate

The goal of this task is to remove
the element that appears twice in a
given list.

[1, 2, 3, 4, 5, 2] → [1, 2, 3, 4, 5]

Remove
element

The goal of this task is to remove a
given element from a list. ([1, 2, 3, 4, 5], 3) → [1, 2, 4, 5]

Reverse The goal of this task is to reverse a
given list.

“abcde” → “edcba”
[1, 2, 3, 4, 5] → [5, 4, 3, 2, 1]

Reverse &
append

The goal of this task is to append
the reversed list to the initial list.

“abc” → “abccba”
[1, 2, 3] → [1, 2, 3, 3, 2, 1]

Count
elements

The goal of this task is to count the
number of elements in a given list or
string.

“abcde” → 5
[1, 2, 3] → 3

Table 6.1: The tasks selected for comparison.

1 quicksort :: (Ord a) => [a] -> [a]
2 quicksort [] = []
3 quicksort (x:xs) = quicksort [y | y <- xs , y <= x] ++ [x] ++ quicksort [y | y <-

xs , y > x] �
Listing 6.1: Sample Haskell solution for quick sort with a time complexity of O(n ⋅ logn).

1 quicksort ([],[]).
2 quicksort ([X|Xs],Ys) :- partition (Xs,X,Left, Right), quicksort (Left,Ls),
3 quicksort (Right ,Rs), append (Ls,[X|Rs],Ys).

38

6.1 Programming Tasks

4
5 partition ([],Y,[],[]).
6 partition ([X|Xs],Y,[X|Ls],Rs) :- X <= Y, partition (Xs,Y,Ls,Rs).
7 partition ([X|Xs],Y,Ls,[X|Rs]) :- X > Y, partition (Xs,Y,Ls,Rs).
8
9 append ([],Ys,Ys).

10 append ([X|Xs],Ys,[X|Zs]) :- append (Xs,Ys,Zs). �
Listing 6.2: Sample Prolog solution for quick sort with a time complexity of O(n ⋅ logn).

Get Initials

An algorithm that extracts the initials of given strings must iterate through the list and
each string in this list must be filtered for upper-case letters. So in theory the complexity
of such an algorithm is O(n ∗ k), where n is the number of strings and k the number
of characters in each string. As k differs from string to string, the algorithm has a
complexity of O(n2). An implementation of this algorithm in Haskell and Prolog can be
found in Listing 6.3 and Listing 6.4.

1 getInitials :: [String] ->[String]
2 getInitials xs = map initials xs
3
4 initials :: String -> String
5 initials xs = [x | x <- xs , isUpper x] �

Listing 6.3: Sample Haskell solution for the get initials task with a time complexity of
O(n2).

1 isUpper (C) :- member (C, ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L'
, 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z']).

2
3 initGetInitials ([],[]).
4 initGetInitials ([X|Xs],[A|Z]) :- string_chars (X, L), getInitials (L, A),

initGetInitials (Xs, Z).
5
6 getInitials ([],[]).
7 getInitials ([X|Xs],[X|Z]) :- isUpper (X),!, getInitials (Xs, Z).
8 getInitials ([X|Xs],Z) :- getInitials (Xs, Z). �

Listing 6.4: Sample Prolog solution for the get initials task with a time complexity of
O(n2).

Reverse

Reversing a list can be done in linear time (O(n)) and is easy to implement by using
recursion. An algorithm that reverses a list must first iterate to the end of the list and
then recursively appending the traversed elements. An implementation of this algorithm
can be found in Listing 6.5 as Haskell code and in Listing 6.6 as Prolog code.

39

6 Benchmark and Comparisons

1 reverse :: [a] -> [a]
2 reverse [] = []
3 reverse (x:xs) = reverse xs ++ [x] �

Listing 6.5: Sample Haskell solution for reversing a list with a time complexity of O(n).

1 reverse ([], Y, Y).
2 reverse ([X|Xs], Y, Z) :- reverse (Xs, Y, [X|Z]). �

Listing 6.6: Sample Prolog solution for reversing a list with a time complexity of O(n).

6.2 Results

Table 6.2 shows which tasks could be solved by the systems. First it was tested if a
system is able to produce an output and if so, if the output is correct. Details can be
found in the following subsections.

Some users might be able to correctly synthesize some of the unsolved tasks for some
of the systems, but even after an intensive examination of the systems, I was not able to
induce code sequences for all tools.

Problem / System MagicHaskeller FOIL Metaopt Hoogle+
Sort 3 3 – –
Split names 3 – - –
Get initials 3 – 3 –
Duplicate elements 3 ☇ – –
Find duplicate ☇ – 3 –
Remove duplicate 3 – – 3

Remove element 3 – – –
Reverse 3 3 ☇ –
Reverse & append 3 ☇ – –
Count elements 3 ☇ – –

Table 6.2: Experimental Results for all four systems1.

The structure of the mentioned subsections might differ from section to section as the
systems are in some ways quite difficult to compare and also the results differ a lot.

13: A correct output was produced.
☇: An incorrect output was produced.
–: No output was produced.

40

6.2 Results

6.2.1 MagicHaskeller

To synthesize programs with MagicHaskeller I first used the web interface to obtain a
Haskell code sequence which I then tested in GHCi. The system had no problem to
synthesize nine out of ten programming tasks within seconds. All programs consist of
only one function f, most of them are higher-order functions and use lambda expressions,
but some also use just one library function such as sort for the sorting task, nub to
remove duplicates or reverse to reverse a list (see Table 6.3).

Nonetheless, MagicHaskeller was not able to synthesize a correct code sequence for
the find duplicate task. Normally the system needs only one input-output example, but
for this task also two or more examples did not lead to a correct program.

The complexity of the used Haskell functions determines the efficiency of the synthesized
expression. That is why to analyse the efficiency of the synthesized programs one must
determine the complexity of the used Haskell standard library functions as well as the
complexity of function compositions or λ-abstractions. The analysis of the synthesized
programs also can be found in Table 6.3. The algorithms are analyzed by their runtime
complexity, which is expressed by using the big O notation.

Problem Solution Complexity
Sort f = sort O(n ⋅ logn)
Split names f = \xs -> transpose (map words xs) O(n2)
Get initials f = map (filter isUpper) O(n2)
Duplicate elements f = \xs -> concat (transpose

(replicate 2 xs))
O(n)

Remove duplicate f = nub O(n2)
Remove element f = \a b -> filter (/= b) a O(n)
Reverse f = reverse O(n)
Reverse & append f = \a -> a ++ reverse a O(n)
Count elements f = length O(n)

Table 6.3: Runtime complexity of the synthesized code sequences (9/10 tasks).

Most of the algorithms have a complexity of O(n). As the sort function – which is
part of the Data.List Haskell library – is implemented as merge sort it has a complexity
of O(n ⋅ logn). Compared against other sorting algorithms merge sort is rather efficient,
but needs additional memory.

6.2.2 FOIL

Program synthesis with FOIL is rather difficult as the input data files are quite hard
to create. The definition of types and constants as well as the specification of positive
examples can be tedious, but are rather simple tasks compared to the definition of
relations.

41

6 Benchmark and Comparisons

The system comes with a few pre-built data files, to solve the tasks member, sort and
reverse. Member was already described in one of the previous chapters and checks if a
given element is part of a given list. Sort and reverse are tasks as described in Section 6.1.

To know how to define such relations the user must have an idea of the structure
of the final algorithm. This leads to input files with a few hundred or even thousands
lines of data, e.g. the data file for the task reverse consists of 9266 lines of code and
four relations (components(L,E,L), null(L), list(L) and append(L,L,L)) had to be
defined to synthesize Horn clauses that describe the act of reversing a list. For the
relation append, that describes how to link two lists, all possible combinations for input
lists with numbers from 1 to 4 and sizes from an empty list to a list with four elements
had to be defined, which led to 8991 examples. As a consequence it is nearly impossible
to work with strings such as names as this would lead to very, very large number of
constants that has to be declared. If an undeclared constant is used – in other words an
element that was not defined in the set of constants – the system does not produce an
output. The synthesized Horn clauses can be found in Table 6.4.

Problem Solution Complexity
Sort See Listing 6.7 and Listing 6.8 O(n2)
Duplicate elements See Listing 6.9 and Listing 6.10 Incorrect
Reverse See Listing 6.11 and Listing 6.12 O(n2)
Reverse & append reverseAndAppend(A,A) :- null(A) Incorrect
Count elements See Listing 6.13 and Listing 6.14 Incorrect

Table 6.4: Runtime complexity of the synthesized code sequences (5/10 tasks).

Even if relations are defined, FOIL is not able to synthesize correct Horn clauses for
three out of five tasks (see Table 6.4). Of course this could be ascribed to the fact that
relations were either incorrectly defined or relations that are crucial to solve the task are
missing.

To exploit FOIL’s full potential correct command line options must be used. For
example for synthesizing the duplicate elements task as shown in Listing 6.9 the command
.\foil6 -v0 -N data < duplicateElements.d must be used to obtain a result. When
using e.g. the flag -N, the system does not consider any negative literals except negated
equality literals. Further instructions on how to use the various command line options
are given in the corresponding manual.

The algorithm for sorting found by FOIL (see Listing 6.7 and Listing 6.8) is correct,
but more complex than it needs to be and thus has a complexity of O(n2).

1 sort ([],[]) :-
2 sort(A,B) :- components (A,C,[]), sort ([],E), components (B,C,E)
3 sort(A,B) :- components (A,C,D), components (B,E,F), sort(D,G), components (B,C,G),

components (F,I,J), lt(E,I)
4 sort(A,B) :- components (A,C,D), components (B,E,F), sort(D,G), components (G,E,H),

lt(E,C), components (I,C,H), sort(I,F)

42

6.2 Results

�
Listing 6.7: A correct solution for sorting a list found by FOIL.

1 sort ([],[]).
2 sort(A,B) :- components (A,C,[]), sort ([],E), components (B,C,E).
3 sort(A,B) :- components (A,C,D), components (B,E,F), sort(D,G), components (B,C,G),

components (F,I,_J), E < I.
4 sort(A,B) :- components (A,C,D), components (B,E,F), sort(D,G), components (G,E,H),
5 E < C, components (I,C,H), sort(I,F).
6
7 components ([X|Xs],X,Xs). �

Listing 6.8: Corresponding Prolog code to the sorting algorithm found by FOIL.

FOIL did find clauses for duplicating the elements of a list (see Listing 6.9), but it
is not correct which can easily be seen when looking at line 1 or 2 where comparisons
between elements are made. The corresponding Prolog code can be found in Listing 6.10.

1 duplicate (A,B) :- components (A,C,D), append (E,D,A), append (D,E,F),
2 components (F,G,H), A<>E, E<>H
3 duplicate (A,B) :- A<>B, list(B)
4 duplicate (A,B) :- append (C,D,A), append (D,C,E), components (E,F,C),
5 duplicate (C,H), list(H) �

Listing 6.9: FOIL’s attempt to synthesize the duplicate elements task.

1 duplicate (A,B) :- append (E,D,[C|D]), append (D,E,[G|H]), [C|D] \= E, E \= H.
2 duplicate (A,B) :- A \= B, list(B).
3 duplicate (A,B) :- append (C,D,A), append (D,C,E), components (E,F,C), duplicate (C,H),

list(H).
4
5 components ([X|Xs],X,Xs).
6
7 append ([],Ys,Ys).
8 append ([X|Xs],Ys,[X|Zs]) :- append (Xs,Ys,Zs).
9

10 list ([]).
11 list ([_|Xs]) :- list(Xs). �

Listing 6.10: Corresponding Prolog code to FOIL’s incorrect solution for duplicating.

The algorithm for reversing a list found by FOIL (see Listing 6.11 and Listing 6.12) is
correct, but again more complicated than necessary and has a complexity of O(n2). As
shown in Section 6.1.1 reversing a list can be done in linear time.

1 reverse (A,A) :- null(A)
2 reverse (A,B) :- components (A,C,D), reverse (D,E), append (F,D,A), append (E,F,B) �

Listing 6.11: A correct solution for reversing a list synthesized by FOIL.

43

6 Benchmark and Comparisons

1 reverse ([],[]).
2 reverse (A,B) :- components (A,C,D), reverse (D,E), append (F,D,A), append (E,F,B).
3
4 components ([X|Xs],X,Xs).
5
6 append ([],Ys,Ys).
7 append ([X|Xs],Ys,[X|Zs]) :- append (Xs,Ys,Zs). �

Listing 6.12: Corresponding Prolog code to the reversing algorithm found by FOIL.

The clauses found by FOIL (see Listing 6.13) for counting the number of elements
in a list are also incorrect as the algorithm simply returns the second element of the
list. For example when calling count([1,2,3], X) (implemented in Listing 6.14) the
function returns X = 2. The incorrectness of the algorithm gets more obvious when a list
of characters is passed as first argument, e.g. count(['a', 'b'], X) returns X = b.

1 count ([],B) :- ˜ components (C,B,[])
2 count (A,B) :- components (A,C,D), components (E,B,A), components (D,B,F)
3 count (A,B) :- components (A,C,D), count (D,E), B<>E, components (D,F,G), count (G,H),

components (I,B,G), B<>H, ˜ count (I,C) �
Listing 6.13: FOIL’s attempt to synthesize the count function.

1 count ([],B) :- \+ components (_C,B,[]).
2 count (A,B) :- components (A,_C,D), components (_E,B,A), components (D,B,_F).
3 count (A,B) :- components (A,C,D), count (D,E), B \= E, components (D,_F,G),
4 count (G,H), components (I,B,G), B \= H, \+ count (I,C).
5
6 components ([X|Xs],X,Xs). �

Listing 6.14: Corresponding Prolog code to FOIL’s incorrect solution for counting.

6.2.3 Metaopt

As already mentioned Metaopt comes with a large number of examples divided into four
categories: converge, duplicate, strings and postman.
Converge and duplicate both cover the find duplicate problem, where the goal is to find a
number in a list of numbers that appears twice in it. The difference is, that the examples
and data in converge should show that Metaopt converges on minimal cost programs
after given a certain number of training examples, which is the case after approximately
15 examples according to Cropper and Muggleton [4]. Duplicate on the other hand
just compares the efficiency of Metaopt, Metagol and MetagolO when synthesizing code
sequences to solve the find duplicate problem as described above.
Examples and data in strings cover real-world string transformations, such as extracting
a first name from the sentence “My name is...” or from a given e-mail address. Further
there a examples that can handle strings with numbers in it such as dates, for example
formatting a sequence of numbers such that it is equal to a common date format (e.g.
1112011⇒ 1/11/2011).

44

6.2 Results

Last postman covers the postman experiment described in a previous paper of Cropper
and Muggleton [3]. The goal here is to synthesize a process of collecting and delivering
letters as done by postmen. As this is a rather specific scenario I will not cover this
problem further.
The process of synthesizing other examples than the given ones proved to be difficult as
it is nowhere described how to do so. I analyzed the data file for the string problems
to find out how new problems can be synthesized by Metaopt. It transpired that to
synthesize code sequences for the given problem tasks only three examples have to be
provided. Further meta-rules (such as curry and chain) and predicates (such as is letter/1
or is uppercase/1) have to be defined. Nonetheless I tried to synthesize programs for
the tasks described in Section 6.1 by solely defining five input-output examples, but no
meta-rules or predicates. The results can be found in Table 6.2.

Problem Solution Complexity
Get Initials Listing 6.15 O(n)
Find duplicate Listing 6.16 O(n ⋅ logn)
Reverse Listing 6.17 Incorrect

Table 6.5: Runtime complexity of the synthesized code sequences (3/10 tasks).

It is not surprising that by simply giving input-output examples Metaopt was not able
to solve most of the problems. It seems like the system merely works for tasks defined
by the developers. According to the Readme file, the results can be reproduced with
new data but there is no explicit mention of synthesizing programs for new tasks. When
observing the results, it becomes pretty obvious that synthesizing new tasks is nearly
impossible without defining predicates because none of the synthesized functions uses
built-in predicates. The predicates used in Listing 6.15, 6.16 and 6.17 are implemented by
the developers and can be found in bk.pl (see supplementary material2). Those were used
to help analyze the complexity of the synthesized code sequences as done in Table 6.5.

1 f(A,B) :- filter (A,B, is_uppercase). �
Listing 6.15: The code sequence for extracting initials found by Metaopt.

1 f(A,B) :- mergesort (A,C),f_1(C,B).
2 f_1(A,B) :- head(A,B),f_2(A,B).
3 f_1(A,B) :- tail(A,C),f_1(C,B).
4 f_2(A,B) :- tail(A,C),head(C,B). �

Listing 6.16: The code sequence for finding a duplicate a list found by Metaopt.

1 f(A,B) :- myreverse (A,C),f_1(C,B).
2 f_1(A,B) :- dropWhile (A,B, is_uppercase).

2urlhttps://git.uibk.ac.at/csas8322/learning-efficient-programs-bachelor-thesis

45

6 Benchmark and Comparisons

�
Listing 6.17: Metaopt’s attempt for finding a code sequence that reverses a list.

The solution for get initials can not be compared with the solution produced by
MagicHaskeller as Metaopt was only able to extract the initials of a single name and not
for a list of names where each name is a list itself.

The synthesized code sequence for finding an element that appears twice in a list
(find duplicate) is rather impressive as the system was able to find a code sequence that
first sorts the list and then compares all elements until two adjacent elements are found
that are the same. Due to the fact that sorting was implemented as merge sort this
algorithm is quite efficient and according to the authors it is also the most efficient for
the hypothesis space of the system [4]. Of course there are even more efficient ways to
find a duplicate (e.g. using a hash map).

Unfortunately the system was not able to synthesize a correct solution for reverse,
although a predicate called myreverse/2 is implemented. The code sequence shown in
Listing 6.17 only produces a correct result if a list is not empty and contains more than
one element and no upper-case letters.

6.2.4 Hoogle+

Hoogle+ seems quite promising on paper, but when using the web interface to synthesize
other algorithms than the five predefined and presented tasks all of a sudden every query
reaches the timeout limit. In most cases the system is able to infer a matching type, but
fails on finding a code sequence. Further most of the predefined examples do only work
when the correct type is either manually given or chosen by the user. “Simple” types
such as x:[a] → [a] (proposed by the tool and ranked first by the system’s heuristic
function) do not lead to a result, e.g. for the remove duplicate task. Instead the type
Eq a ⇒ x:[a] → [a] (ranked fifth) must be chosen to get a (correct) result for the above
mentioned task.
Hoogle+ was tested by performing a user study with 30 participants, which had to rate
themselves as either Haskell-novices, intermediate-level users or experts. According to
the authors 12 participants were novices, 10 intermediates and 8 experts. The users were
given four tasks plus one training example to get familiar with the tool. 73 out of 120
task were completed and only one out of 73 solutions was wrong [14]. When analyzing
the results of this study and after trying out the examples, it is hardly surprising that
tasks that require an exact type definition as described above could only be solved by
just a few of the participants. More precisely, only six participants were able to solve
Task B of the study (the remove duplicate task).
Taken into account all of the problems mentioned above it is not surprising that Hoogle+
was only able to solve one of the tasks. This task is further one of the predefined and
well-described examples. When choosing the input exactly as it is documented in the
corresponding paper a code sequence for the remove duplicate example can be synthesized
(see Table 6.6), but if e.g. a more general type is chosen, the systems again reaches the

46

6.2 Results

timeout.

Problem Solution Complexity

Remove duplicate \xs -> map head (group xs) O(n)

Table 6.6: Runtime complexity of the synthesized code sequence (1/10 tasks).

Compared to the solution of MagicHaskeller (see Table 6.3), where the in Data.List
predefined nub function is used to remove elements that appear twice in the given list, the
solution of Hoogle+ (see Table 6.6) is more efficient because it is a linear time algorithm,
while MagicHaskeller’s solution has quadratic behaviour. It is more likely that this is a
coincidence and not intended by the developers as there was no mention of a focus on
efficiency in the corresponding paper.

47

7 Conclusion
After intensively analysing and testing various systems for program synthesis, it can be
concluded that there are some promising examples of tools for inductive programming. It
has been shown that systems that use already existing libraries (such as MagicHaskeller)
are quite successful when it comes to synthesizing single-line code sequences or more
precisely singe-line functions.

Especially MagicHaskeller is extremely simple to use and therefore a tool that can
even help people with no experience in programming to write simple Haskell programs.
Although it was implemented 15 years ago it is still competitive in comparison with other
systems as, for example, the search for a suitable code sequence is of short duration. Its
main advantage is that for most of the problems only one input-output example is needed,
but if necessary more examples can be given. The implemented exemplify feature gives
on the one hand instant feedback if the synthesized function is correct for a number of
test cases and makes it on the other hand possible to narrow the search by automatically
adding more input-output examples. Further the system can be used by simply accessing
the web interface which makes it available for the general public.

Hoogle+ is quite similar in its implementation and application but unfortunately not
yet ready to use as the system does not terminate in most of the cases that were tested.
It seems like this might be due to the inability of the system to find a code sequence
when given a type that is too general and therefore the search through the abstract
transition net (ATN) as described in subsection 5.4.1 can not be finished before a timeout
is reached. Of course this assumption should be further examined, but this would go
beyond the scope of this thesis. Nonetheless the accuracy of the type inference feature
and the corresponding heuristic function that ranks inferred types of Hoogle+ are quite
impressive.

Metaopt has the potential to synthesize powerful and efficient programs if the respective
meta-rules and predicates are defined by the user or the developers. To do so the user has
to know the structure of the algorithm in advance. Then and only then the system is able
to find correct and efficient Prolog code sequences by giving three to five examples. Further
it must be said that currently predefined tasks (including meta-rules and predicates)
purely focus on string transformations. Moreover it is poorly documented how to use the
system and how new tasks can be added. An intensive analysis of the available files and
rewriting bash scripts as wells as Prolog files were necessary to only start an attempt
on synthesizing programs for new problems. That said, Metaopt is far apart from being
used by programming novices or people that are not able to program on their own.

FOIL was for sure an impressive system when it was introduced in 1990 and certainly
helped to draw attention to the field of inductive logic programming. Nowadays and
in comparison with other ILP systems it probably seems slightly impracticable as it is

48

only able to induce Horn clauses and not executable programs or at least code sequences.
Due to the fact that constants, types and relations have to be defined by the user,
programming novices might not be able to use the system but on the other hand it is
well documented how to use it. Nonetheless some algorithms require to predefine several
relations and thousands of input-output examples. To define such relations one must
further know the structure of the algorithm in advance as in the case of Metaopt.

When it comes to the efficiency of the synthesized programs it must be said that at this
moment research should probably focus on developing systems that are able to induce all
kind of (small) programs without having the need of predefining parts of the algorithm
such as types, meta-rules, predicates or relations. Nonetheless all of the described systems
are able to synthesize programs in some kind of way, but only MagicHaskeller seems
usable with little to no effort.

49

Bibliography

[1] K. Claessen and J. Hughes. Quickcheck: a lightweight tool for random testing of
haskell programs. In M. Odersky and P. Wadler, editors, Proceedings of the Fifth
ACM SIGPLAN International Conference on Functional Programming (ICFP ’00),
Montreal, Canada, September 18-21, 2000, pages 268–279. ACM, 2000.

[2] A. Cropper and S. Dumancic. Inductive logic programming at 30: a new introduction.
CoRR, abs/2008.07912, 2020.

[3] A. Cropper and S. H. Muggleton. Learning efficient logical robot strategies involving
composable objects. In Q. Yang and M. J. Wooldridge, editors, Proceedings of the
Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015,
Buenos Aires, Argentina, July 25-31, 2015, pages 3423–3429. AAAI Press, 2015.

[4] A. Cropper and S. H. Muggleton. Learning efficient logic programs. Mach. Learn.,
108(7):1063–1083, 2019.

[5] P. Flener and U. Schmid. An introduction to inductive programming. Artif. Intell.
Rev., 29(1):45–62, 2008.

[6] D. Gantenbein. Flash fill gives excel a smart charge. https://www.microsoft.
com/en-us/research/blog/flash-fill-gives-excel-smart-charge/, 2013. Ac-
cessed: 2020-05-02.

[7] A. L. Gaunt, M. Brockschmidt, R. Singh, N. Kushman, P. Kohli, J. Taylor, and
D. Tarlow. Summary - terpret: A probabilistic programming language for program
induction. CoRR, abs/1612.00817, 2016.

[8] S. Gulwani. Automating string processing in spreadsheets using input-output
examples. In T. Ball and M. Sagiv, editors, Proceedings of the 38th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2011, Austin,
TX, USA, January 26-28, 2011, pages 317–330. ACM, 2011.

[9] S. Gulwani, O. Polozov, and R. Singh. Program synthesis. Found. Trends Program.
Lang., 4(1-2):1–119, 2017.

[10] Z. Guo, M. James, D. Justo, J. Zhou, Z. Wang, R. Jhala, and N. Polikarpova.
Program synthesis by type-guided abstraction refinement. Proc. ACM Program.
Lang., 4(POPL):12:1–12:28, 2020.

50

https://www.microsoft.com/en-us/research/blog/flash-fill-gives-excel-smart-charge/
https://www.microsoft.com/en-us/research/blog/flash-fill-gives-excel-smart-charge/

Bibliography

[11] T. Helmuth and L. Spector. General program synthesis benchmark suite. In S. Silva
and A. I. Esparcia-Alcázar, editors, Proceedings of the Genetic and Evolutionary
Computation Conference, GECCO 2015, Madrid, Spain, July 11-15, 2015, pages
1039–1046. ACM, 2015.

[12] J. Hernández-Orallo and M. J. Ramı́rez-Quintana. Inverse narrowing for the in-
duction of functional logic programs. In J. L. Freire-Nistal, M. Falaschi, and M. V.
Ferro, editors, 1998 Joint Conference on Declarative Programming, APPIA-GULP-
PRODE’98, A Coruña, Spain, July 20-23, 1998, pages 379–392, 1998.

[13] M. Hofmann, E. Kitzelmann, and U. Schmid. A unifying framework for analysis and
evaluation of inductive programming systems. Proceedings of the 2nd Conference on
Artificial General Intelligence, AGI 2009, pages 74–79, 06 2009.

[14] M. B. James, Z. Guo, Z. Wang, S. Doshi, H. Peleg, R. Jhala, and N. Polikarpova.
Digging for fold: synthesis-aided API discovery for haskell. Proc. ACM Program.
Lang., 4(OOPSLA):205:1–205:27, 2020.

[15] S. Katayama. Power of brute-force search in strongly-typed inductive functional pro-
gramming automation. In C. Zhang, H. W. Guesgen, and W. Yeap, editors, PRICAI
2004: Trends in Artificial Intelligence, 8th Pacific Rim International Conference
on Artificial Intelligence, Auckland, New Zealand, August 9-13, 2004, Proceedings,
volume 3157 of Lecture Notes in Computer Science, pages 75–84. Springer, 2004.

[16] S. Katayama. Systematic search for lambda expressions. In Sixth Symposium on
Trends in Functional Programming, TFP 2005, Tallinn, Estonia, 23-24 September
2005, pages 195–205, 2005.

[17] S. Katayama. Systematic search for lambda expressions. In M. C. J. D. van Eekelen,
editor, Trends in Functional Programming, volume 6, pages 111–126. Intellect, 2007.

[18] S. Katayama. Efficient exhaustive generation of functional programs using monte-
carlo search with iterative deepening. In T. B. Ho and Z. Zhou, editors, PRICAI
2008: Trends in Artificial Intelligence, 10th Pacific Rim International Conference on
Artificial Intelligence, Hanoi, Vietnam, December 15-19, 2008. Proceedings, volume
5351 of Lecture Notes in Computer Science, pages 199–210. Springer, 2008.

[19] S. Katayama. Recent improvements of magicHaskeller. In U. Schmid, E. Kitzelmann,
and R. Plasmeijer, editors, Approaches and Applications of Inductive Programming,
Third International Workshop, AAIP 2009, Edinburgh, UK, September 4, 2009.
Revised Papers, volume 5812 of Lecture Notes in Computer Science, pages 174–193.
Springer, 2009.

[20] S. Katayama. MagicHaskeller: System demonstration. Proceedings of AAIP 2011 -
4th International Workshop on Approaches and Applications of Inductive Program-
ming, pages 63–70, 01 2011.

51

Bibliography

[21] S. Katayama. An analytical inductive functional programming system that avoids
unintended programs. In O. Kiselyov and S. J. Thompson, editors, Proceedings of the
ACM SIGPLAN 2012 Workshop on Partial Evaluation and Program Manipulation,
PEPM 2012, Philadelphia, Pennsylvania, USA, January 23-24, 2012, pages 43–52.
ACM, 2012.

[22] S. Katayama. MagicHaskeller: Automatic inductive functional programmer by
systematic search. https://hackage.haskell.org/package/MagicHaskeller-0.
9.6.6.1, 2017. Accesed: 2020-07-28.

[23] E. Kitzelmann. Data-driven induction of recursive functions from input/output-
examples. In E. Kitzelmann and U. Schmid, editors, Proc. of the ECML/PKDD
2007 Workshop on Approaches and Applications of Inductive Programming, pages
15–26, 2007.

[24] E. Kitzelmann. Analytical inductive functional programming. In M. Hanus, editor,
Logic-Based Program Synthesis and Transformation, 18th International Symposium,
LOPSTR 2008, Valencia, Spain, July 17-18, 2008, Revised Selected Papers, volume
5438 of Lecture Notes in Computer Science, pages 87–102. Springer, 2008.

[25] E. Kitzelmann. Inductive programming: A survey of program synthesis techniques. In
U. Schmid, E. Kitzelmann, and R. Plasmeijer, editors, Approaches and Applications
of Inductive Programming, Third International Workshop, AAIP 2009, Edinburgh,
UK, September 4, 2009. Revised Papers, volume 5812 of Lecture Notes in Computer
Science, pages 50–73. Springer, 2009.

[26] E. Kitzelmann and U. Schmid. Inductive synthesis of functional programs: An
explanation based generalization approach. J. Mach. Learn. Res., 7:429–454, 2006.

[27] J. McCarthy. Recursive functions of symbolic expressions and their computation by
machine, part I. Commun. ACM, 3(4):184–195, 1960.

[28] S. Muggleton. Inductive logic programming. New Gener. Comput., 8(4):295–318,
1991.

[29] S. Muggleton. Inverse entailment and progol. New Gener. Comput., 13(3&4):245–286,
1995.

[30] S. Muggleton and C. Feng. Efficient induction of logic programs. In S. Arikawa,
S. Goto, S. Ohsuga, and T. Yokomori, editors, Algorithmic Learning Theory, First
International Workshop, ALT ’90, Tokyo, Japan, October 8-10, 1990, Proceedings,
pages 368–381. Springer/Ohmsha, 1990.

[31] S. Muggleton and L. D. Raedt. Inductive logic programming: Theory and methods.
J. Log. Program., 19/20:629–679, 1994.

[32] S. H. Muggleton, D. Lin, N. Pahlavi, and A. Tamaddoni-Nezhad. Meta-interpretive
learning: application to grammatical inference. Mach. Learn., 94(1):25–49, 2014.

52

https://hackage.haskell.org/package/MagicHaskeller-0.9.6.6.1
https://hackage.haskell.org/package/MagicHaskeller-0.9.6.6.1

Bibliography

[33] S. H. Muggleton, D. Lin, and A. Tamaddoni-Nezhad. Meta-interpretive learning of
higher-order dyadic datalog: predicate invention revisited. Mach. Learn., 100(1):49–
73, 2015.

[34] R. Olsson. Inductive functional programming using incremental program transfor-
mation. Artif. Intell., 74(1):55–8, 1995.

[35] E. R. Pantridge, T. Helmuth, N. F. McPhee, and L. Spector. On the difficulty of
benchmarking inductive program synthesis methods. In P. A. N. Bosman, editor,
Genetic and Evolutionary Computation Conference, Berlin, Germany, July 15-19,
2017, Companion Material Proceedings, pages 1589–1596. ACM, 2017.

[36] G. Plotkin. Lattice Theoretic Properties of Subsumption. MIP-R-. Edinburgh
University, Department of Machine Intelligence and Perception, 1970.

[37] J. R. Quinlan. Learning logical definitions from relations. Mach. Learn., 5:239–266,
1990.

[38] J. R. Quinlan. Learning first-order definitions of functions. J. Artif. Intell. Res.,
5:139–161, 1996.

[39] J. R. Quinlan and R. M. Cameron-Jones. FOIL: A midterm report. In P. Brazdil,
editor, Machine Learning: ECML-93, European Conference on Machine Learning,
Vienna, Austria, April 5-7, 1993, Proceedings, volume 667 of Lecture Notes in
Computer Science, pages 3–20. Springer, 1993.

[40] C. Runciman, M. Naylor, and F. Lindblad. Smallcheck and lazy smallcheck: auto-
matic exhaustive testing for small values. In A. Gill, editor, Proceedings of the 1st
ACM SIGPLAN Symposium on Haskell, Haskell 2008, Victoria, BC, Canada, 25
September 2008, pages 37–48. ACM, 2008.

[41] U. Schmid. Inductive Synthesis of Functional Programs, Universal Planning, Folding
of Finite Programs, and Schema Abstraction by Analogical Reasoning, volume 2654
of Lecture Notes in Computer Science. Springer, 2003.

[42] U. Schmid, E. Kitzelmann, and R. Plasmeijer, editors. Approaches and Applications
of Inductive Programming, Third International Workshop, AAIP 2009, Edinburgh,
UK, September 4, 2009. Revised Papers, volume 5812 of Lecture Notes in Computer
Science. Springer, 2010.

[43] R. Singh. Accessible programming using program synthesis. PhD thesis, Massachusetts
Institute of Technology, Cambridge, MA, USA, 2014.

[44] J. M. Spivey. Combinators for breadth-first search. J. Funct. Program., 10(4):397–408,
2000.

[45] P. D. Summers. A methodology for LISP program construction from examples. J.
ACM, 24(1):161–175, 1977.

53

	Introduction
	Aim and Methodological Approach
	Contributions
	Overview

	Inductive Programming
	Inductive Logic Programming
	Inductive Functional Programming

	Background and Related Work
	Foundation of ILP
	Pioneer Work in IFP
	Surveys of IP Systems

	Applications of Program Synthesis
	Data Wrangling
	Automated Program Repair
	Code Suggestions
	Superoptimization
	Teaching Tool for Programming Novices

	Tools, Frameworks and Systems
	MagicHaskeller
	The Algorithm
	Implementation – Web Interface
	Implementation – Haskell Package

	FOIL
	The Algorithm
	Implementation

	Metaopt
	The Algorithm
	Implementation

	Hoogle+
	The Algorithm
	Implementation

	Benchmark and Comparisons
	Programming Tasks
	Sample Solutions

	Results
	MagicHaskeller
	FOIL
	Metaopt
	Hoogle+

	Conclusion
	Bibliography

